Skip to content Skip to navigation

OpenStax-CNX

You are here: Home » Content » Matrices -- Identity and Inverse Matrices

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Featured Content display tagshide tags

    This module is included inLens: Connexions Featured Content
    By: ConnexionsAs a part of collection: "Advanced Algebra II: Teacher's Guide"

    Comments:

    "This is the "teacher's guide" book in Kenny Felder's "Advanced Algebra II" series. This text was created with a focus on 'doing' and 'understanding' algebra concepts rather than simply hearing […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • Busbee's Math Materials display tagshide tags

    This module is included inLens: Busbee's Math Materials Lens
    By: Kenneth Leroy BusbeeAs a part of collection: "Advanced Algebra II: Teacher's Guide"

    Click the "Busbee's Math Materials" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Matrices -- Identity and Inverse Matrices

Module by: Kenny M. Felder. E-mail the author

Summary: A teacher's guide to identity and inverse matrices.

This may, in fact, be two days masquerading as one—it depends on the class. They can work through the sheet on their own, but as you are circulating and helping, make sure they are really reading it, and getting the point! As I said earlier, they need to know that [ I] [I] is defined by the property AI=IA=A AI IA A , and to see how that definition leads to the diagonal row of 1s. They need to know that A-1 A -1 is defined by the property AA1=A1 AA 1 A 1 =I=I, and to see how they can find the inverse of a matrix directly from this definition. That may all be too much for one day.

I also always mention that only a square matrix can have an [I][I]. The reason is that the definition requires I I to work commutatively: AI AI and IA IA both have to give A A. You can play around very quickly to find that a 2×3 2 3 matrix cannot possibly have an [I][I] with this requirement. And of course, a non-square matrix has no inverse, since it has no [I][I] and the inverse is defined in terms of [I][I]!

Homework:

“Homework—The Identity and Inverse Matrices”

Content actions

Download module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks