Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Advanced Algebra II: Teacher's Guide » Inverse of the Generic 2x2 Matrix

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Featured Content display tagshide tags

    This collection is included inLens: Connexions Featured Content
    By: Connexions

    Comments:

    "This is the "teacher's guide" book in Kenny Felder's "Advanced Algebra II" series. This text was created with a focus on 'doing' and 'understanding' algebra concepts rather than simply hearing […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • Busbee's Math Materials display tagshide tags

    This collection is included inLens: Busbee's Math Materials Lens
    By: Kenneth Leroy Busbee

    Click the "Busbee's Math Materials" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Inverse of the Generic 2x2 Matrix

Module by: Kenny M. Felder. E-mail the author

Summary: A teacher's guide to the generic 2x2 matrix.

This is one of those things that should be easy, but it isn’t. It should be easy because they have already been doing it, with numbers, and it’s just the same with letters. But hey, that’s what Algebra II is about, right?

They should definitely work in groups here. Make sure they understand what they are doing. A clear sign that they don’t understand what they are doing, even a little, is that they wind up solving for a, or solving for w in terms of x, or something like that. They need to understand that the object is to solve for w, x, y, and z in terms of a, b, c, and d. Only by doing this can they come up with a generic solution to the inverse of a 2×2 matrix, which can then be used quickly and easily to find the inverse of any 2×2 matrix. If they don’t understand that, they just don’t have any idea what we’re doing—it’s important to get them to understand the problem instead of just focusing on solving it.

The answer, by the way, is A-1= 1adbc1adbc size 12{ { {1} over { ital "ad" - ital "bc"} } } {}dbcadbca size 12{ left [ matrix { d {} # - b {} ## - c {} # a{} } right ]} {}. Once they have it, in this form, help them understand how to use it—the numbers in this diagonal switch places, the number in that diagonal change signs. This also helps set up the determinant (ad-bc), by the way.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks