Connexions module: m19612

BESOV SPACES AND NONLINEAR APPROXIMATION*

Albert Cohen

This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License †

Abstract

The following is a short introduction to Besov spaces and their characterization by means of approximation procedures as well as wavelet decompositions.

A natural idea for approximating a function f by wavelets is to retain in the N largest contributions in the norm in which we plan to measure the error. In the case where this norm is L^p , this is given by

$$A_N f := \sum_{\lambda \in E_{N,p}(f)} d_\lambda \psi_\lambda,\tag{1}$$

where $E_{N,p}(f)$ is the set of indices of the N largest $\|d_{\lambda}\psi_{\lambda}\|_{L^p}$. This set depends on the function f, making this approximation process **nonlinear**. Other instances of nonlinear approximation are discussed in [4].

An important result established in [5] states that $||f - A_N f||_{L^p} \sim N^{-r/d}$ is achieved for functions $f \in B^r_{q,q}$ where 1/q = 1/p + r/d. Note that this relation between p and q corresponds to a critical case of the Sobolev embedding of $B^r_{q,q}$ into L^p . In particular, $B^r_{q,q}$ is not contained in $B^\epsilon_{p,p}$ for any $\epsilon > 0$, so that no decay rate can be achieved by a linear approximation process for all the functions f in the space $B^r_{q,q}$. (For some functions in $B^r_{q,q}$, which happen to also lie in spaces for which an independent linear approximation theorem can be written, it is of course possible to get a linear approximation rate; the point here is that this is possible only via such additional information.)

Note also that for large values of r, the parameter q given by 1/q = 1/p + r/d is smaller than 1. In such a situation the space $B^s_{q,q}$ is not a Banach space any more and is only a quasi-norm (it fails to satisfy the triangle inequality $||x+y|| \le ||x|| + ||y||$). However, this space is still contained in L^1 (by a Sobolev-type embedding) and its characterization by means of wavelets coefficients according to still holds. Letting q go to zero as r goes to infinity allows the presence of singularities in the functions of $B^r_{q,q}$ even when r is large: for example, a function which is piecewise \mathcal{C}^n on an interval except at a finite number of isolated points of discontinuities belongs to all $B^r_{q,q}$ for q < 1/s and r < n. This is a particular instance where a non-linear approximation process will perform substantially better than a linear projection.

References

- [1] R. Adams. Sobolev Spaces. Academic Press, 1975.
- [2] A. Cohen. Numerical Analysis of Wavelet Methods. Elsevier, 2003.

^{*}Version 1.3: Sep 16, 2009 3:21 pm -0500

[†]http://creativecommons.org/licenses/by/2.0/

Connexions module: m19612 2

[3] Ingrid Daubechies. *Ten Lectures on Wavelets*. SIAM, Philadelphia, PA, 1992. Notes from the 1990 CBMS-NSF Conference on Wavelets and Applications at Lowell, MA.

- [4] R. DeVore. Nonlinear Approximation. Acta Numerica, 1998.
- [5] B. Jawerth R. DeVore and V. Popov. Compression of wavelet decompositions. *American Journal of Math*, 114:737–285, 1992.
- [6] H. Triebel. Theory of Function Spaces. Birkhauser, 1983.