# OpenStax-CNX

You are here: Home » Content » algebra lineal (kolmanejer32sec1.6)

### Recently Viewed

This feature requires Javascript to be enabled.

# algebra lineal (kolmanejer32sec1.6)

Module by: daniel chavez. E-mail the author

ejercicio algebralineal,kolman.. 32 seccion 1.6

Sea

f x y z = 1 2 3 - 3 - 2 - 1 - 2 0 2 f x y z = 1 2 3 - 3 - 2 - 1 - 2 0 2
(1)

determine x,y,zx,y,z tales que

f x y z = 2 2 4 f x y z = 2 2 4
(2)

Plan

• Escribimos la matriz extendida
• Hacemos reducción de Gauss Jordan
• Interpretamos los resultados para determinar x,y,zx,y,z

Ejecución

redsage] blue A = matrix([[1,2,3,2],[-3,-2,-1,2],[-2,0,2,4]])

redsage] blueA

1232-3-2-12-20241232-3-2-12-2024


redsage] blueA.echelon_form()

123204880000123204880000


Esto quiere decir que:

z R 4 y + 8 z = 8 x + 2 y + 3 z = 2 z R 4 y + 8 z = 8 x + 2 y + 3 z = 2
(3)

redsage] bluex,y,z = var('x, y,z')

redsage] blue solve([x + 2*y + 3*z ==2, 4*y + 8*z == 8], x, y, z)

x=r1-2,y=2-2r1,z=r1x=r1-2,y=2-2r1,z=r1


Esto en su forma vectorial es igual a

x y z = - 2 2 0 + 1 - 2 1 r , r R x y z = - 2 2 0 + 1 - 2 1 r , r R
(4)

## Content actions

### Give feedback:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks