Utilizar la regla de cramer, cuando sea aplicable, para resolver el sistema

red`sage] `

blue
B=matrix (QQ,[[1,-2,-3],[2,1,1],[1,3,-2]])

red`sage] `

blue`B`

1 - 2 - 3 2 1 1 1 3 - 2 1 - 2 - 3 2 1 1 1 3 - 2 = A

red`sage] `

blue`B.determinant()`

- 30 - 30 = |A|

red`sage] `

blue
C = matrix ( QQ,[[-1,-2,-3],[6,1,1],[13,3,-2]])

red`sage] `

blue`C`

- 1 - 2 - 3 6 1 1 13 3 - 2 - 1 - 2 - 3 6 1 1 13 3 - 2 = A x

red`sage] `

blue`C.determinant()`

- 60 - 60 = | A x |

red`sage] `

blue
D = matrix (QQ,[[1,-1,-3],[2,6,1],[1,13,-2]])

red`sage] `

blue`D`

1 - 1 - 3 2 6 1 1 13 - 2 1 - 1 - 3 2 6 1 1 13 - 2 = A y

red`sage] `

blue`D.determinant()`

- 90 - 90 = |A*y*|

red`sage] `

blue

red`sage] `

blue
E=matrix (QQ,[[1,-2,-1],[2,1,6],[1,3,13]])

red`sage] `

blue`C`

- 1 - 2 - 3 6 1 1 13 3 - 2 - 1 - 2 - 3 6 1 1 13 3 - 2 = A z

red`sage] `

blue`C.determinant ()`

- 60 - 60 = |A z |

red`sage] `

blue