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Abstract

This module describes the method of partial fraction expansion, in which a ratio of polynomials can

be split into a sum of small polynomials. The Heaviside cover-up method is discussed in detail with

examples. Finding a partial fraction expansion in matlab is also discussed.

Splitting up a ratio of large polynomials into a sum of ratios of small polynomials can be a useful tool,
especially for many problems involving Laplace-like transforms. This technique is known as partial fraction
expansion. Here's an example of one ratio being split into a sum of three simpler ratios:

8x2 + 3x− 21
x3 − 7x− 6

=
1

x+ 2
+

3
x− 3

+
4

x+ 1
(1)

There are several methods for expanding a rational function via partial fractions. These include the
method of clearing fractions, the Heaviside "cover-up" method, and di�erent combinations of these two.
For many cases, the Heaviside "cover-up" method is the easiest, and is therefore the method that we will
introduce here. For a more complete discussion, see Signal Processing and Linear Systems by B.P. Lathi,
Berkeley-Cambridge Press, 1998, pp-24-33. Some of the material below is based upon this book.

1 Heaviside "Cover-Up" Method

1.1 No Repeated Roots

Let's say we have a proper function G (x) = N(x)
D(x) (by proper we mean that the degree m of the numerator

N (x) is less than the degree p of denominator D (x) ). In this section we assume that there are no repeated
roots of the polynomial D (x).

The �rst step is to factor the denominator D (x):

G (x) =
N (x)

(x− a1) (x− a2) . . . (x− ap)
(2)

where a1 . . . ap are the roots of D (x). We can then rewrite G (x) as a sum of partial fractions:

G (x) =
α1

x− a1
+

α2

x− a2
+ · · ·+ αp

x− ap
(3)

∗Version 2.14: Nov 24, 2003 1:34 pm -0600
†http://creativecommons.org/licenses/by/1.0

http://cnx.org/content/m2111/2.14/



Connexions module: m2111 2

where a1 . . . ap are constants. Now, to complete the process, we must determine the values of these α
coe�cients. Let's look at how to �nd α1. If we multiply both sides of the equation of G(x) as a sum of
partial fractions (3) by x − a1 and then let x = a1, all of the terms on the right-hand side will go to zero
except for α1. Therefore, we'll be left over with:

α1 = (x− a1)G (x) |x=a1
(4)

We can easily generalize this to a solution for any one of the unknown coe�cients:

αr = (x− ar)G (x) |x=ar
(5)

This method is called the "cover-up" method because multiplying both sides by x−ar can be thought of
as simply using one's �nger to cover up this term in the denominator of G (x). With a �nger over the term
that would be canceled by the multiplication, you can plug in the value x = ar and �nd the solution for αr.

Example 1

In this example, we'll work through the partial fraction expansion of the ratio of polynomials
introduced above. Before doing a partial fraction expansion, you must make sure that the ratio
you are expanding is proper. If it is not, you should do long division to turn it into the sum of a
proper fraction and a polynomial. Once this is done, the �rst step is to factor the denominator of
the function:

8x2 + 3x− 21
x3 − 7x− 6

=
8x2 + 3x− 21

(x+ 2) (x− 3) (x+ 1)
(6)

Now, we set this factored function equal to a sum of smaller fractions, each of which has one of
the factored terms for a denominator.

8x2 + 3x− 21
(x+ 2) (x− 3) (x+ 1)

=
α1

x+ 2
+

α2

x− 3
+

α3

x+ 1
(7)

To �nd the alpha terms, we just cover up the corresponding denominator terms in G (x) and
plug in the root associated with the alpha:

α1 = (x+ 2)G (x) |x=−2

= 8x2+3x−21
(x−3)(x+1) |x=−2

= 1

(8)

α2 = (x− 3)G (x) |x=3

= 8x2+3x−21
(x+2)(x+1) |x=3

= 3

(9)

α3 = (x+ 3)G (x) |x=−1

= 8x2+3x−21
(x+2)(x−3) |x=−1

= 4

(10)

We now have our completed partial fraction expansion:

8x2 + 3x− 21
(x+ 2) (x− 3) (x+ 1)

=
1

x+ 2
+

3
x− 3

+
4

x+ 1
(11)
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1.2 Repeated Roots

When the function G (x) has a repeated root in its denominator, as in

G (x) =
N (x)

(x− b)r (x− a1) (x− a2) . . . (x− aj)
(12)

Somewhat more special care must be taken to �nd the partial fraction expansion. The non-repeated
terms are expanded as before, but for the repeated root, an extra fraction is added for each instance of the
repeated root:

G (x) =
β0

(x− b)r +
β1

(x− b)r−1 + · · ·+ βr−1

x− b
+

α1

x− a1
+

α2

x− a2
+ · · ·+ αj

x− aj
(13)

All of the alpha constants can be found using the non-repeated roots method above. Finding the beta
coe�cients (which are due to the repeated root) has the same Heaviside feel to it, except that this time we
will add a twist by using the derivative to eliminate some unwanted terms.

Starting o� directly with the cover-up method, we can �nd β0. By multiplying both sides by (x− b)r
,

we'll get:

(x− b)r
G (x) = β0 + β1 (x− b) + · · ·+ βr−1(x− b)r−1 + α1

(x− b)r

x− a1
+ α2

(x− b)r

x− a2
+ · · ·+ αj

(x− b)r

x− aj
(14)

Now that we have "covered up" the (x− b)r
term in the denominator of G (x), we plug in x = b to each

side; this cancels every term on the right-hand side except for β0, leaving the formula

β0 = (x− b)r
G (x) |x=b (15)

To �nd the other values of the beta coe�cients, we can take advantage of the derivative. By taking the
derivative of the equation after cover-up (14) (with respect to x the right-hand side becomes β1 plus terms
containing an x− b in the numerator. Again, plugging in x = b eliminates everything on the right-hand side
except for β1, leaving us with a formula for β1:

β1 =
d(x− b)r

G (x)
dx

|x=b (16)

Generalizing over this pattern, we can continue to take derivatives to �nd the other beta terms. The
solution for all beta terms is

βk =
1
k!
dk(x− b)r

G (x)
dxk

|x=b (17)

note: To check if you've done the partial fraction expansion correctly, just add all of the partial
fractions together to see if their sum equals the original ratio of polynomials.

2 Finding Partial Fractions in Matlab

Matlab can be a useful tool in �nding partial fraction expansions when the ratios become too unwieldy to
expand by hand. It can handle symbolic variables. For example, if you type syms s, s will be treated as a
symbolic variable. You can then use it as such when you make function assignments.

If you've done this and have then made a function, say H (s), which is a ratio of two polynomials in the
symbolic variable s, there are two ways to get the partial fraction expansion of it. A trick way is to say
diff(int(H)). When you use these functions together, Matlab gives back H expanded into partial fractions.
There's also a more formal way to do it using the residue command. Type help residue in Matlab for
details.
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