# OpenStax_CNX

You are here: Home » Content » Om te bereken deur bewerkings te kies wat geskik is om probleme op te los

### Lenses

What is a lens?

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

#### In these lenses

• GETIntPhaseMaths

This module is included inLens: Siyavula: Mathematics (Gr. 4-6)
By: Siyavula

Review Status: In Review

Click the "GETIntPhaseMaths" link to see all content selected in this lens.

Click the tag icon to display tags associated with this content.

### Recently Viewed

This feature requires Javascript to be enabled.

### Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.

# Om te bereken deur bewerkings te kies wat geskik is om probleme op te los

Module by: Siyavula Uploaders. E-mail the author

## OPVOEDERS AFDELING

1.1 3 272 + 128 = 3 400

1 154 + 136 = 1 290

1 103 + 97 = 1 200

SOM = 5 890

1.2 138 + 622 = 760

259 + 11 011 = 11 270

235 + 25 = 4 260

SOM: = 16 290

2.1 Verkeerd: 640 + 360 + 5 + 2 – 2 = 1 005

2.2 Verkeerd: 2 500 + 360 = 2 880

KOPKRAPPER

1. 41 186 + 23 880 + 12 = 65 078

2. 758 817 + 100 + 118 200 – 4 = 875 113

Verskeie ander moontlikhede ook.

## LEERDERS AFDELING

### AKTIWITEIT: Om te bereken deur bewerkings te kies wat geskik is om probleme op te los [LU 1.8.2]

#### ONTHOU JY NOG?

Optelling is makliker wanneer ons getalle GROEPEER.

Kyk goed na die volgende voorbeeld:

37 + 28 + 12 + 16 + 13 + 44

As ons groepeer, lyk dit so: 37 + 13 = 50

28 + 12 = 40

44 + 16 = 60

SOM = 150

Het jy gesien? Ons groepeer die getalle so omdat ons tiene wil “volmaak”, want dis maklik om op te tel.

1. Groepeer nou die volgende getalle sodat jy makliker kan optel:

1.1 3 272 ; 1 154 ; 97 ; 128 ; 136 ; 1 103

_________________ + _________________ = _________________

_________________ + _________________ = _________________

_________________ + _________________ = _________________

SOM = _________________

1.2 138 ; 259 ; 4 235 ; 25 ; 11 011 ; 622

_________________ + _________________ = _________________

_________________ + _________________ = _________________

_________________ + _________________ = _________________

SOM = _________________

2. Werk saam met ’n maat en stel vas of die antwoorde van die volgende bewerkings korrek is. Indien nie, wys die fout uit.

2.1 638 + 367 = 640 + 360 – 5 = 995

2.2 2 496 + 364 = 2 600 + 360 = 2 960

#### KOPKRAPPER!

Jy moes die volgende voltooi met ’n sakrekenaar, maar jou sakrekenaar se 9 is stukkend! Hoe gaan jy die probleem oplos? Skryf alles neer wat jy sal insleutel en bereken die antwoord:

1. 41 186 + 23 892

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

2. 756 917 + 118 196

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

#### TYD VIR SELFASSESSERING!

Hoe het jy tot dusver gevaar? Gee vir ons ‘n aanduiding hoe jy voel oor die werk wat ons tot dusver afgehandel het. Maak net ‘n regmerkie in die toepaslike kolom:

 Glad nie Redelik goed Goed Uitste-kend Ek weet wat “som van” beteken. _______ _______ _______ _______ Ek kan die woord “inverse” verduidelik. _______ _______ _______ _______ Ek kan getalle groepeer om makliker op te tel. (LU1.8) _______ _______ _______ _______

## Assessering

Leeruitkomste 1:Die leerder is in staat om getalle en hul verwantskappe te herken, te beskryf en voor te stel. Hulle kan ook met bekwaamheid en vertroue tel, skat, bereken en kontroleer tydens die oplos van probleme.

Assesseringstandaard 1.8: Dit is duidelik wanneer die leerder skat en bereken deur geskikte bewerkings vir die oplossing van probleme in verband met die volgende te kies en te gebruik:

1.8.2: optel en aftrek van heelgetalle.

## Content actions

### Give feedback:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks