Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Wiskunde Graad 6 » Om te herken, te beskryf en te gebruik

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

In these lenses

  • GETIntPhaseMaths display tagshide tags

    This module and collection are included inLens: Siyavula: Mathematics (Gr. 4-6)
    By: Siyavula

    Module Review Status: In Review
    Collection Review Status: In Review

    Click the "GETIntPhaseMaths" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Om te herken, te beskryf en te gebruik

Module by: Siyavula Uploaders. E-mail the author

WISKUNDE

Vermenigvuldiging en Deling

Vermenigvuldiging

OPVOEDERS AFDELING

Memorandum

1. 17

  1. x 19

63

72

Nog iets om te weet.

50

  1. + 15 = 50

2. (a) 20 + 7

(b) 500 + 30

500 30 94

KOPKRAPPERS

Table 1
X X
X X
X X

1.4 Dolfyn

LEERDERS AFDELING

Inhoud

AKTIWITEIT: Om te herken, te beskryf en te gebruik [LU 1.12.2]

1. Kyk weer goed na die eienskappe van vermenigvuldiging wat jy tot dusver bestudeer het. Voltooi dan die volgende:

17 x (15 x 13) = (_________________________x 15) x 13

(246 x 38) x 19 = 246 x (_____________x _____________)

_______________________ x (526 x 59) = (63 x 59) x 526

(349 x _______________________) x 68 = 72 x (349 x 68)

Nog iets om te weet!

Die DISTRIBUTIEWE EIENSKAP van vermenigvuldiging maak dit baie makliker om die produk te bereken.

Bereken die antwoord van die volgende:

(7 + 3) x 5 = _________________________________

(7 x 5) + (3 x 5) = _____________ + _____________ = _____________

Dus: (7 + 3) x 5 = (7 x 5) + (3 x 5)

2. Werk saam met ’n maat en vul die ontbrekende antwoorde in:

a) 68 x 27 = 68 x (_______________ + _________________)

b) 94 x 536 = 94 x (_______________ + _____________ + 6)

= (94 x _______________) + (94 x _______________) + (_______________x 6)

KOPKRAPPER!

4 Voltooi die volgende tabel deur net ’n regmerkie () of ’n kruisie () in te vul:

Table 2
Eienskap geld vir vermenigvuldiging geld vir deling geld vir optelling geld vir aftrekking
Kommutatiewe ____________ _______ _______ _______
Assosiatiewe ____________ _______ _______ _______
Distributiewe ____________ _______ _______ _______

TYD VIR SELFASSESSERING!

Kom ons kyk hoe het jy tot dusver gevaar! Lees die kriteria goed deur en merk dan net die blokkie wat waar is vir jou.

Table 3
: 1 2 3 4
         
Ek ken die 12x-tafel. (LU 1.9) ____ ____ _____ _____
Ek ken die terminologie produk, veelvoud, faktore, vermenigvuldiger, ens. en kan dit korrek gebruik. (LU 1.12) ____ ____ _____ _____
Ek kan getalle se faktore korrek bepaal. (LU 1.3) ____ ____ _____ _____
Ek kan die kommutatiewe eienskap van vermenigvuldiging toepas. (LU 1.12) ____ ____ _____ _____
Ek kan die assosiatiewe eienskap van vermenigvuldiging toepas. (LU 1.12) ____ ____ _____ _____
Ek kan die distributiewe eienskap van vermenigvuldiging toepas. (LU 1.12) ____ ____ _____ _____

Assessering

Leeruitkomste 1:Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.12: Dit is duidelik wanneer die leerder herken, beskryf en gebruik:

1.12.2: die kommutatiewe, assosiatiewe en distributiewe eienskappe van heelgetalle.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks