# OpenStax-CNX

You are here: Home » Content » Wiskunde Graad 6 » Om te bereken deur bewerkings te kies wat geskik is om probleme op te los

### Lenses

What is a lens?

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

#### In these lenses

• GETIntPhaseMaths

This module and collection are included inLens: Siyavula: Mathematics (Gr. 4-6)
By: Siyavula

Module Review Status: In Review
Collection Review Status: In Review

Click the "GETIntPhaseMaths" link to see all content selected in this lens.

Click the tag icon to display tags associated with this content.

### Recently Viewed

This feature requires Javascript to be enabled.

### Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.

Inside Collection (Course):

Course by: Siyavula Uploaders. E-mail the author

# Om te bereken deur bewerkings te kies wat geskik is om probleme op te los

Module by: Siyavula Uploaders. E-mail the author

1.1 51 012

1.2 164 862

1.3 251 505

## Kopkrapper

1. Skryf neer: 4 x 8 = 3/2 ; 5 x 8 = 4/0; 6 x 8 = 4/8

Tel getalle diagonaal (skuins) op.

2.1

= 3 490

2.2

= 6 183

2.3

= 2 458 934

## Inhoud

### AKTIWITEIT: Om te bereken deur bewerkings te kies wat geskik is om probleme op te los [LU 1.8.4]

1. Gebruik nou enige metode en bereken:

• 654 x 78

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

1.2 426 x 387

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

1.3 729 x 345

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

TYD VIR SELFASSESSERING

Dit is belangrik dat ons sal weet hoe jy voel oor die gedeelte van die werk wat tot dusver afgehandel is. Gee vir ons ‘n aanduiding van hoe goed jy die werk verstaan deur die kriteria te lees en dan die toepaslike blokkie met ‘n regmerkie te merk.

 RY WAG STOP Ek verstaan magte van 10 en kan berekeninge daarmee doen. (LU 1.10) _______ _______ _______ Ek kan my sakrekenaar programmeer om in magte van 10 te vermenigvuldig. (LU 1.10) _______ _______ _______ Ek kan ’n alternatiewe metode gebruik i.p.v. om met 25 te vermenigvuldig. (LU 1.10) _______ _______ _______ Ek kan met 125 vermenigvuldig sonder om 125 as vermenigvuldiger te gebruik.(LU 1.10) _______ _______ _______ Ek ken my tafels. (LU 1.9) _______ _______ _______ Ek verstaan al die vermenigvuldigings-metodes in die module. (LU 1.11 en LU 2.6) _______ _______ _______ Ek kan die produk van enige 2 getalle sonder my sakrekenaar bereken. (LU 1.8) _______ _______ _______

#### KOPKRAPPER!

In 1617 het Lord John Napier die volgende tabel vir vermenigvuldiging in Skotland gebruik:

456 × 8 het hy so bereken:

Sy antwoord was 3 648.

1. Werk saam met ’n maat. Kan julle sy metode verduidelik?

_____________________________________________________________________

_____________________________________________________________________

2. Gebruik nou die tabel en bereken:

2.1 698 x 5

= ___________________

2.2 687 x 9

= ___________________

2.3 Hoe sou julle 6 437 x 382 met behulp van die tabel bereken?

= ___________________

2.4 Gee nou vir jou maat ’n som om met behulp van die tabel uit te werk! Skryf jou som, die berekening en die antwoord hieronder neer.

2.5 Kontroleer jou maat se som.

## Assessering

Leeruitkomste 1:Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.11: Dit is duidelik wanneer die leerder ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid van oplossings te beoordeel.

Leeruitkomste 2:Die leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel en probleme op te los deur algebraïese taal en vaardighede te gebruik.

Assesseringstandaard 2.6: Dit is duidelik wanneer die leerder deur bespreking en vergelyking, die ekwivalensie van verskillende beskrywings van dieselfde verwantskap of reël wat soos volg voorgestel word bepaal:

2.6.3: met getallesinne.

## Content actions

PDF | EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

#### Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

#### Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks