Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » Wiskunde Graad 6 » Om te bereken deur bewerkings te kies wat geskik is om probleme op te los

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

In these lenses

  • GETIntPhaseMaths display tagshide tags

    This module and collection are included inLens: Siyavula: Mathematics (Gr. 4-6)
    By: Siyavula

    Module Review Status: In Review
    Collection Review Status: In Review

    Click the "GETIntPhaseMaths" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Om te bereken deur bewerkings te kies wat geskik is om probleme op te los

Module by: Siyavula Uploaders. E-mail the author

WISKUNDE

Vermenigvuldiging en Deling

Vermenigvuldiging

OPVOEDERS AFDELING

Memorandum

1.1 51 012

1.2 164 862

1.3 251 505

Kopkrapper

1. Skryf neer: 4 x 8 = 3/2 ; 5 x 8 = 4/0; 6 x 8 = 4/8

Tel getalle diagonaal (skuins) op.

Figure 1
Figure 1 (graphics1.png)
2.1

= 3 490

Figure 2
Figure 2 (graphics2.png)
2.2

= 6 183

Figure 3
Figure 3 (graphics3.png)

2.3

= 2 458 934

LEERDERS AFDELING

Inhoud

AKTIWITEIT: Om te bereken deur bewerkings te kies wat geskik is om probleme op te los [LU 1.8.4]

1. Gebruik nou enige metode en bereken:

  • 654 x 78

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

1.2 426 x 387

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

1.3 729 x 345

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

____________________________________

TYD VIR SELFASSESSERING

Dit is belangrik dat ons sal weet hoe jy voel oor die gedeelte van die werk wat tot dusver afgehandel is. Gee vir ons ‘n aanduiding van hoe goed jy die werk verstaan deur die kriteria te lees en dan die toepaslike blokkie met ‘n regmerkie te merk.

Table 1
  RY WAG STOP
Ek verstaan magte van 10 en kan berekeninge daarmee doen. (LU 1.10) _______ _______ _______
Ek kan my sakrekenaar programmeer om in magte van 10 te vermenigvuldig. (LU 1.10) _______ _______ _______
Ek kan ’n alternatiewe metode gebruik i.p.v. om met 25 te vermenigvuldig. (LU 1.10) _______ _______ _______
Ek kan met 125 vermenigvuldig sonder om 125 as vermenigvuldiger te gebruik.(LU 1.10) _______ _______ _______
Ek ken my tafels. (LU 1.9) _______ _______ _______
Ek verstaan al die vermenigvuldigings-metodes in die module. (LU 1.11 en LU 2.6) _______ _______ _______
Ek kan die produk van enige 2 getalle sonder my sakrekenaar bereken. (LU 1.8) _______ _______ _______

KOPKRAPPER!

In 1617 het Lord John Napier die volgende tabel vir vermenigvuldiging in Skotland gebruik:

Figure 4
Figure 4 (graphics4.jpg)

456 × 8 het hy so bereken:

Figure 5
Figure 5 (AKTW_1.12_02.jpg)

Sy antwoord was 3 648.

1. Werk saam met ’n maat. Kan julle sy metode verduidelik?

_____________________________________________________________________

_____________________________________________________________________

2. Gebruik nou die tabel en bereken:

2.1 698 x 5

Figure 6
Figure 6 (graphics5.png)

= ___________________

2.2 687 x 9

Figure 7
Figure 7 (graphics6.png)

= ___________________

2.3 Hoe sou julle 6 437 x 382 met behulp van die tabel bereken?

Figure 8
Figure 8 (graphics7.png)

= ___________________

2.4 Gee nou vir jou maat ’n som om met behulp van die tabel uit te werk! Skryf jou som, die berekening en die antwoord hieronder neer.

2.5 Kontroleer jou maat se som.

Assessering

Leeruitkomste 1:Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.11: Dit is duidelik wanneer die leerder ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid van oplossings te beoordeel.

Leeruitkomste 2:Die leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel en probleme op te los deur algebraïese taal en vaardighede te gebruik.

Assesseringstandaard 2.6: Dit is duidelik wanneer die leerder deur bespreking en vergelyking, die ekwivalensie van verskillende beskrywings van dieselfde verwantskap of reël wat soos volg voorgestel word bepaal:

2.6.3: met getallesinne.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks