# Connexions

You are here: Home » Content » Wiskunde Graad 6 » Om probleme in konteks op te los

### Lenses

What is a lens?

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

#### In these lenses

• GETIntPhaseMaths

This module and collection are included inLens: Siyavula: Mathematics (Gr. 4-6)
By: Siyavula

Module Review Status: In Review
Collection Review Status: In Review

Click the "GETIntPhaseMaths" link to see all content selected in this lens.

Click the tag icon to display tags associated with this content.

### Recently Viewed

This feature requires Javascript to be enabled.

### Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.

Inside Collection (Course):

Course by: Siyavula Uploaders. E-mail the author

# Om probleme in konteks op te los

Module by: Siyavula Uploaders. E-mail the author

## Memorandum

1. Susan = 3,48

Lala = 3,4

Lauren = 3,2

Anna = 3,12

2. Susan: (2,32 + 3,48 + 3,02 + 2,9) ÷ 4 = 2,93 (2,9 m)

Lala: (3,2 + 3,04 + 2,86 + 3,4) ÷ 4 = 3,125 (3,1 m)

Lauren: (2,88 + 2,96 + 3,06 + 3,2) ÷ 4 = 3,025 (3 m)

Anna: (3,02 + 2,94 + 2,84 + 3,12) ÷ 4 = 2,98 (3 m)

3. (12,95 km + 14,73 km + 8,94 km + 13,8 km + 6,86 km) ÷ 5

= 11,456 km (11,5 km)

4. 11,5 km

## AKTIWITEIT: Om probleme in konteks op te los [LU 1.6.2]

Dit is belangrik dat ons gemiddeldes moet kan uitwerk, omdat ons dit baie in die alledaagse lewe gebruik. Dink maar aan die gemiddelde reënval per maand, die gemiddelde temperatuur vir jul dorp in ‘n sekere seisoen, jul klasgemiddeld, ens.

1. Kyk goed na die volgende en skryf dan die beste sprong van elke atleet neer:

By ‘n atletiekbyeenkoms het vier atlete aan die verspring vir dogters 0/13 deelgeneem. Elkeen het vier spronge voltooi.

 Naam Sprong 1 m Sprong 2 m Sprong 3 m Sprong 4 m Beste Sprong m Susan 2,32 3,48 3,02 2,9 ____________ Lala 3,2 3,04 2,86 3,4 ____________ Lauren 2,88 2,96 3,06 3,2 ____________ Anna 3,02 2,94 2,84 3,12 ____________
• Deur na elkeen se beste sprong te kyk, kan ons vasstel wie gewen het.
• Dit sê egter nie vir ons wie oor die algemeen (oor alvier spronge) die beste gevaar het nie.
• Om dit te kan bepaal moet ons kyk na die gemiddelde van elkeen se spronge.
• Hier volg die formule vir die berekening van die gemiddelde:

Gemiddelde afstand

In Susan se geval sal dit soos volg bereken word:

= 2,93 m (afgerond tot eerste desimaal: 2,9 m)

2. Gebruik nou hierdie formule en bepaal, volgens die vier atlete se gemiddeldes, wie oor die algemeen die beste gevaar het in die verspring vir 0/13-dogters (afgerond tot die eerste desimaal).

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

3. Bereken die gemiddelde afstand wat Johan per dag draf, indien hy van Maandag tot Vrydag die volgende afstande geoefen het:

Ma. 12,95 km; Di. 14,73 km; Wo. 8,94 km; Do. 13,8 km; Vry. 6,86 km.

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

4. Rond jou antwoord af tot die eerste desimaal.

_____________________________________________________________________

TYD VIR SELFASSESSERING

In Leereenheid 1 het ons deeglik na sekere aspekte van meting gekyk. Voordat ons met Leereenheid 2 kan begin, moet ons eers weet of daar sekere haakplekke is, met ander woorde of daar iets is wat jy nog steeds nie verstaan nie. Wys vir ons hoe jy voel oor die werk wat afgehandel is deur die gesiggie wat waar is van jou, netjies in te kleur.

KRITERIA

## Assessering

Leeruitkomste 1:Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.6: Dit is duidelik wanneer die leerder probleme oplos in konteks, insluitend kontekste wat gebruik kan word om ‘n bewustheid van ander leerareas, asook van menseregte-, sosiale, ekonomiese en omgewingskwessies, te bevorder soos:

1.6.2: meting in konteks van Natuurwetenskappe en Tegnologie.

## Content actions

PDF | EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

PDF | EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

#### Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

#### Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks