# OpenStax_CNX

You are here: Home » Content » Wiskunde Graad 7 » Reghoek- en Derdemagsgetalle

### Lenses

What is a lens?

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

#### In these lenses

• GETSenPhaseMaths

This module and collection are included inLens: Siyavula: Mathematics (Gr. 7-9)
By: Siyavula

Module Review Status: In Review
Collection Review Status: In Review

Click the "GETSenPhaseMaths" link to see all content selected in this lens.

Click the tag icon to display tags associated with this content.

### Recently Viewed

This feature requires Javascript to be enabled.

### Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.

Inside Collection (Course):

Course by: Siyavula Uploaders. E-mail the author

# Reghoek- en Derdemagsgetalle

Module by: Siyavula Uploaders. E-mail the author

## Memorandum

2.

(a)

(b) Nee Nie getal se kwadraat

(c) Nee 1 + 2 + 3 + 4 size 12{ div } {} 4 size 12{ div } {} 5 size 12{ <> } {}

3.

(b) 64; 125; 216; 343

(c) 64

(d) 64 000

(e) 274 625

(f) K4: + 64

K5: + 64 + 125 = 225

(g) 1 + 8 + 27 + 64 + 125 + 216 = 441

## AKTIWITEIT: Reghoek- en Derdemagsgetalle [LU 1.3.4, LU 1.7.2, LU 1.7.7, LU 2.3.1, LU 2.3.3]

1. Onthou jy nog?

In module 1 het ons geleer van vierkantgetalle en driehoekgetalle.

a) Kan jy gou aan ’n maat verduidelik hoe bogenoemde patrone lyk?

b) Wat is ’n sinoniem vir vierkantgetalle?

2. Kom ons kyk hoe lyk REGHOEKGETALLE.

Het jy geweet?

Elke telgetal groter as 0 is ’n reghoekgetal. Die Grieke het die term reghoekgetalle gebruik slegs vir die produkte van twee opeenvolgende getalle, bv. 42 = 6 × 7.

As ons reghoekgetalle wil teken, sal dit so lyk:

 ___ ___ ___ ___ ___ ___ ___ ___ ___ 6 = 1 × 6 ___ ___ ___ 6 = 2 × 3

a) Maak nou ’n skets van die reghoekgetal 18 op soveel verskillende maniere as moontlik.

b) Is 18 ’n vierkantgetal? _________________________ Hoekom/hoekom nie?

_____________________________________________________________________

_____________________________________________________________________

c) Is 18 ’n driehoekgetal? _________________________ Hoekom/hoekom nie?

_____________________________________________________________________

_____________________________________________________________________

3. Het jy geweet??

a) Ons kry ook derdemagsgetalle!! Hierdie getalle word ook kubusgetalle genoem. Kyk goed na die voorbeelde:

1 = 1 × 1 × 1

8 = 2 × 2 × 2

27 = 3 × 3 × 3

b) Voorspel nou wat die volgende 4 kubusgetalle sal wees (jy mag jou sakrekenaar gebruik).

___________________________;

___________________________;

___________________________;

___________________________;

c) Watter van die bogenoemde getalle is ook ’n vierkantgetal? ______________

d) Wat sal die 40ste kubusgetal wees? _______________________________

e) Hoeveel is 65³ (tot die mag 3)?___________________________________

f) Kyk goed na die volgende. Kan jy die tabel voltooi?

 Kubus getalle Som van die kubusgetalle K1 1 K2 1 + 8 = 9 K3 1 + 8 + 27 = 36 K4 1 + 8 + 27 + ........... = 100 K5 1 + 8 + 27 + ........... + ........... = .........................

g) Kan jy voorspel wat die som van die eerste 6 kubusgetalle sal wees?

_____________________________________________________________________

h) Wat merk jy op omtrent die getalle in die tweede kolom?

_____________________________________________________________________

## Assessering

Leeruitkomste 1:Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.3: Dit is duidelik wanneer die leerder die volgende getalle herken, klassifiseer en voorstel sodat dit beskryf en vergelyk kan word:

1.3.4: getalle in eksponensiële vorm, insluitend kwadrate van natuurlike getalle tot minstens 12², natuurlike getalle tot die derde mag tot minstens 5³, asook die vierkants- en derdemagswortels van hierdie getalle;

Assesseringstandaard 1.7: Dit is duidelik wanneer die leerder skat en bereken deur geskikte bewerkings vir probleme wat die volgende behels, te kies en te gebruik:

1.7.2: veelvoudige bewerkings met heelgetalle;

1.7.7: eksponente;

Leeruitkomste 2:Die leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel en probleme op te los deur algebraïese taal en vaardighede te gebruik.

Assesseringstandaard 2.3: Dit is duidelik wanneer die leerder voorstellings maak van en verwantskappe tussen veranderlikes gebruik sodat inset- en/of uitsetwaardes op ‘n verskeidenheid maniere bepaal kan word deur die gebruik van:

2.3.1: woordelikse beskrywings;

2.3.3: tabelle.

## Content actions

EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

#### Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

#### Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

### Reuse / Edit:

Reuse or edit collection (?)

#### Check out and edit

If you have permission to edit this content, using the "Reuse / Edit" action will allow you to check the content out into your Personal Workspace or a shared Workgroup and then make your edits.

#### Derive a copy

If you don't have permission to edit the content, you can still use "Reuse / Edit" to adapt the content by creating a derived copy of it and then editing and publishing the copy.

| Reuse or edit module (?)

#### Check out and edit

If you have permission to edit this content, using the "Reuse / Edit" action will allow you to check the content out into your Personal Workspace or a shared Workgroup and then make your edits.

#### Derive a copy

If you don't have permission to edit the content, you can still use "Reuse / Edit" to adapt the content by creating a derived copy of it and then editing and publishing the copy.