Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Elementary Algebra » Combining Polynomials Using Addition and Subtraction

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Endorsed by Endorsed (What does "Endorsed by" mean?)

This content has been endorsed by the organizations listed. Click each link for a list of all content endorsed by the organization.
  • College Open Textbooks display tagshide tags

    This collection is included inLens: Community College Open Textbook Collaborative
    By: CC Open Textbook Collaborative

    Comments:

    "Reviewer's Comments: 'I recommend this book for courses in elementary algebra. The chapters are fairly clear and comprehensible, making them quite readable. The authors do a particularly nice job […]"

    Click the "College Open Textbooks" link to see all content they endorse.

    Click the tag icon tag icon to display tags associated with this content.

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • OrangeGrove display tagshide tags

    This collection is included inLens: Florida Orange Grove Textbooks
    By: Florida Orange Grove

    Click the "OrangeGrove" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Featured Content display tagshide tags

    This collection is included inLens: Connexions Featured Content
    By: Connexions

    Comments:

    "Elementary Algebra covers traditional topics studied in a modern elementary algebra course. Written by Denny Burzynski and Wade Ellis, it is intended for both first-time students and those […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
Download
x

Download collection as:

  • PDF
  • EPUB (what's this?)

    What is an EPUB file?

    EPUB is an electronic book format that can be read on a variety of mobile devices.

    Downloading to a reading device

    For detailed instructions on how to download this content's EPUB to your specific device, click the "(what's this?)" link.

  • More downloads ...

Download module as:

  • PDF
  • EPUB (what's this?)

    What is an EPUB file?

    EPUB is an electronic book format that can be read on a variety of mobile devices.

    Downloading to a reading device

    For detailed instructions on how to download this content's EPUB to your specific device, click the "(what's this?)" link.

  • More downloads ...
Reuse / Edit
x

Collection:

Module:

Add to a lens
x

Add collection to:

Add module to:

Add to Favorites
x

Add collection to:

Add module to:

 

Combining Polynomials Using Addition and Subtraction

Module by: Wade Ellis, Denny Burzynski. E-mail the authors

Summary: This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. Operations with algebraic expressions and numerical evaluations are introduced in this chapter. Coefficients are described rather than merely defined. Special binomial products have both literal and symbolic explanations and since they occur so frequently in mathematics, we have been careful to help the student remember them. In each example problem, the student is "talked" through the symbolic form. Objectives of this module: understand the concept of like terms, be able to combine like terms, be able to simplify expressions containing parentheses.

Overview

  • Like Terms
  • Combining Like Terms
  • Simplifying Expressions Containing Parentheses

Like Terms

Like Terms

Terms whose variable parts, including the exponents, are identical are called like terms. Like terms is an appropriate name since terms with identical variable parts and different numerical coefficients represent different amounts of the same quantity. As long as we are dealing with quantities of the same type we can combine them using addition and subtraction.

Simplifying an Algebraic Expression

An algebraic expression can be simplified by combining like terms.

Sample Set A

Combine the like terms.

Example 1

6houses+4houses=10houses 6houses+4houses=10houses . 6 and 4 of the same type give 10 of that type.

Example 2

6houses+4houses+2motels=10houses+2motels 6houses+4houses+2motels=10houses+2motels . 6 and 4 of the same type give 10 of that type. Thus, we have 10 of one type and 2 of another type.

Example 3

Suppose we let the letter x x represent "house." Then, 6x+4x=10x 6x+4x=10x . 6 and 4 of the same type give 10 of that type.

Example 4

Suppose we let x x represent "house" and y y represent "motel."

6x+4x+2y=10x+2y 6x+4x+2y=10x+2y
(1)

Practice Set A

Like terms with the same numerical coefficient represent equal amounts of the same quantity.

Exercise 1

Like terms with different numerical coefficients represent

                    
.

Combining Like Terms

Since like terms represent amounts of the same quantity, they may be combined, that is, like terms may be added together.

Sample Set B

Simplify each of the following polynomials by combining like terms.

Example 5

2x+5x+3x 2x+5x+3x .
There are 2x's 2x's , then 5 more, then 3 more. This makes a total of 10x's 10x's .

2x+5x+3x=10x 2x+5x+3x=10x

Example 6

7x+8y3x 7x+8y3x .
From 7x's 7x's , we lose 3x's 3x's . This makes 4x's 4x's . The 8y's 8y's represent a quantity different from the x's x's and therefore will not combine with them.

7x+8y3x=4x+8y 7x+8y3x=4x+8y

Example 7

4 a 3 2 a 2 +8 a 3 + a 2 2 a 3 4 a 3 2 a 2 +8 a 3 + a 2 2 a 3 .
4 a 3 ,8 a 3 , 4 a 3 ,8 a 3 , and 2 a 3 2 a 3 represent quantities of the same type.

4 a 3 +8 a 3 2 a 3 =10 a 3 4 a 3 +8 a 3 2 a 3 =10 a 3

2 a 2 2 a 2 and a 2 a 2 represent quantities of the same type.

2 a 2 + a 2 = a 2 2 a 2 + a 2 = a 2

Thus,

4 a 3 2 a 2 +8 a 3 + a 2 2 a 3 =10 a 3 a 2 4 a 3 2 a 2 +8 a 3 + a 2 2 a 3 =10 a 3 a 2

Practice Set B

Simplify each of the following expressions.

Exercise 2

4y+7y 4y+7y

Exercise 3

3x+6x+11x 3x+6x+11x

Exercise 4

5a+2b+4ab7b 5a+2b+4ab7b

Exercise 5

10 x 3 4 x 3 +3 x 2 12 x 3 +5 x 2 +2x+ x 3 +8x 10 x 3 4 x 3 +3 x 2 12 x 3 +5 x 2 +2x+ x 3 +8x

Exercise 6

2 a 5 a 5 +14ab9+9ab23 a 5 2 a 5 a 5 +14ab9+9ab23 a 5

Simplifying Expressions Containing Parentheses

Simplifying Expressions Containing Parentheses

When parentheses occur in expressions, they must be removed before the expression can be simplified. Parentheses can be removed using the distributive property.

Distributive Property

The product of a monomial a and a binomial b plus c is equal to ab plus ac. This is the distributive property. In the expression, there are two arrows originating from the monomial, a, and pointing towards the terms b and c of the binomial.

Sample Set C

Simplify each of the following expressions by using the distributive property and combining like terms.

Example 8

Simplifying the expression six a plus the product of five and the binomial a plus three, using the distributive property, and combining like terms. See the longdesc for a full description.

Example 9

4x+9( x 2 6x2)+5 Removeparentheses. 4x+9 x 2 54x18+5 Combineliketerms. 50x+9 x 2 13 4x+9( x 2 6x2)+5 Removeparentheses. 4x+9 x 2 54x18+5 Combineliketerms. 50x+9 x 2 13

By convention, the terms in an expression are placed in descending order with the highest degree term appearing first. Numerical terms are placed at the right end of the expression. The commutative property of addition allows us to change the order of the terms.

9 x 2 50x13 9 x 2 50x13

Example 10

2+2[5+4(1+a)] 2+2[5+4(1+a)]
Eliminate the innermost set of parentheses first.

2+2[5+4+4a] 2+2[5+4+4a]

By the order of operations, simplify inside the parentheses before multiplying (by the 2).

2+2[9+4a] Removethissetofparentheses. 2+18+8a Combineliketerms. 20+8a Writeindescendingorder. 8a+20 2+2[9+4a] Removethissetofparentheses. 2+18+8a Combineliketerms. 20+8a Writeindescendingorder. 8a+20

Example 11

x(x3)+6x(2x+3) x(x3)+6x(2x+3)
Use the rule for multiplying powers with the same base.

x 2 3x+12 x 2 +18x Combineliketerms. 13 x 2 +15x x 2 3x+12 x 2 +18x Combineliketerms. 13 x 2 +15x

Practice Set C

Simplify each of the following expressions by using the distributive property and combining like terms.

Exercise 7

4(x+6)+3(2+x+3 x 2 )2 x 2 4(x+6)+3(2+x+3 x 2 )2 x 2

Exercise 8

7(x+ x 3 )4 x 3 x+1+4( x 2 2 x 3 +7) 7(x+ x 3 )4 x 3 x+1+4( x 2 2 x 3 +7)

Exercise 9

5(a+2)+6a7+(8+4)(a+3a+2) 5(a+2)+6a7+(8+4)(a+3a+2)

Exercise 10

x(x+3)+4 x 2 +2x x(x+3)+4 x 2 +2x

Exercise 11

a 3 ( a 2 +a+5)+a( a 4 +3 a 2 +4)+1 a 3 ( a 2 +a+5)+a( a 4 +3 a 2 +4)+1

Exercise 12

2[83(x3)] 2[83(x3)]

Exercise 13

x 2 +3x+7[x+4 x 2 +3(x+ x 2 )] x 2 +3x+7[x+4 x 2 +3(x+ x 2 )]

Exercises

For the following problems, simplify each of the algebraic expressions.

Exercise 14

x+3x x+3x

Exercise 15

4x+7x 4x+7x

Exercise 16

9a+12a 9a+12a

Exercise 17

5m3m 5m3m

Exercise 18

10x7x 10x7x

Exercise 19

7y9y 7y9y

Exercise 20

6k11k 6k11k

Exercise 21

3a+5a+2a 3a+5a+2a

Exercise 22

9y+10y+2y 9y+10y+2y

Exercise 23

5m7m2m 5m7m2m

Exercise 24

h3h5h h3h5h

Exercise 25

a+8a+3a a+8a+3a

Exercise 26

7ab+4ab 7ab+4ab

Exercise 27

8ax+2ax+6ax 8ax+2ax+6ax

Exercise 28

3 a 2 +6 a 2 +2 a 2 3 a 2 +6 a 2 +2 a 2

Exercise 29

14 a 2 b+4 a 2 b+19 a 2 b 14 a 2 b+4 a 2 b+19 a 2 b

Exercise 30

10y15y 10y15y

Exercise 31

7ab9ab+4ab 7ab9ab+4ab

Exercise 32

210a b 4 +412a b 4 +100 a 4 b (Lookcloselyattheexponents.) 210a b 4 +412a b 4 +100 a 4 b (Lookcloselyattheexponents.)

Exercise 33

5 x 2 y 0 +3 x 2 y+2 x 2 y+1, y0 (Lookcloselyattheexponents.) 5 x 2 y 0 +3 x 2 y+2 x 2 y+1, y0 (Lookcloselyattheexponents.)

Exercise 34

8 w 2 12 w 2 3 w 2 8 w 2 12 w 2 3 w 2

Exercise 35

6xy3xy+7xy18xy 6xy3xy+7xy18xy

Exercise 36

7 x 3 2 x 2 10x+15 x 2 3 x 3 12+x 7 x 3 2 x 2 10x+15 x 2 3 x 3 12+x

Exercise 37

21y15x+40xy611y+712xxy 21y15x+40xy611y+712xxy

Exercise 38

1x+1y1x1y+xy 1x+1y1x1y+xy

Exercise 39

5 x 2 3x7+2 x 2 x 5 x 2 3x7+2 x 2 x

Exercise 40

2 z 3 +15z+4 z 3 + z 2 6 z 2 +z 2 z 3 +15z+4 z 3 + z 2 6 z 2 +z

Exercise 41

18 x 2 y14 x 2 y20 x 2 y 18 x 2 y14 x 2 y20 x 2 y

Exercise 42

9 w 5 9 w 4 9 w 5 +10 w 4 9 w 5 9 w 4 9 w 5 +10 w 4

Exercise 43

2 x 4 +4 x 3 8 x 2 +12x17 x 3 1 x 4 6x+2 2 x 4 +4 x 3 8 x 2 +12x17 x 3 1 x 4 6x+2

Exercise 44

17 d 3 r+3 d 3 r5 d 3 r+6 d 2 r+ d 3 r30 d 2 r+37+2 17 d 3 r+3 d 3 r5 d 3 r+6 d 2 r+ d 3 r30 d 2 r+37+2

Exercise 45

a 0 +2 a 0 4 a 0 , a0 a 0 +2 a 0 4 a 0 , a0

Exercise 46

4 x 0 +3 x 0 5 x 0 +7 x 0 x 0 , x0 4 x 0 +3 x 0 5 x 0 +7 x 0 x 0 , x0

Exercise 47

2 a 3 b 2 c+3 a 2 b 2 c 0 +4 a 2 b 2 a 3 b 2 c, c0 2 a 3 b 2 c+3 a 2 b 2 c 0 +4 a 2 b 2 a 3 b 2 c, c0

Exercise 48

3z6z+8z 3z6z+8z

Exercise 49

3 z 2 z+3 z 3 3 z 2 z+3 z 3

Exercise 50

6 x 3 +12x+5 6 x 3 +12x+5

Exercise 51

3(x+5)+2x 3(x+5)+2x

Exercise 52

7(a+2)+4 7(a+2)+4

Exercise 53

y+5(y+6) y+5(y+6)

Exercise 54

2b+6(35b) 2b+6(35b)

Exercise 55

5a7c+3(ac) 5a7c+3(ac)

Exercise 56

8x3x+4(2x+5)+3(6x4) 8x3x+4(2x+5)+3(6x4)

Exercise 57

2z+4ab+5zab+12(1abz) 2z+4ab+5zab+12(1abz)

Exercise 58

(a+5)4+6a20 (a+5)4+6a20

Exercise 59

(4a+5b2)3+3(4a+5b2) (4a+5b2)3+3(4a+5b2)

Exercise 60

(10x+3 y 2 )4+4(10x+3 y 2 ) (10x+3 y 2 )4+4(10x+3 y 2 )

Exercise 61

2(x6)+5 2(x6)+5

Exercise 62

1(3x+15)+2x12 1(3x+15)+2x12

Exercise 63

1(2+9a+4 a 2 )+ a 2 11a 1(2+9a+4 a 2 )+ a 2 11a

Exercise 64

1(2x6b+6 a 2 b+8 b 2 )+1(5x+2b3 a 2 b) 1(2x6b+6 a 2 b+8 b 2 )+1(5x+2b3 a 2 b)

Exercise 65

After observing the following problems, can you make a conjecture about 1(a+b) 1(a+b) ?
1(a+b)= 1(a+b)=

Exercise 66

Using the result of problem 52, is it correct to write
(a+b)=a+b? (a+b)=a+b?

Exercise 67

3(2a+2 a 2 )+8(3a+3 a 2 ) 3(2a+2 a 2 )+8(3a+3 a 2 )

Exercise 68

x(x+2)+2( x 2 +3x4) x(x+2)+2( x 2 +3x4)

Exercise 69

A(A+7)+4( A 2 +3a+1) A(A+7)+4( A 2 +3a+1)

Exercise 70

b(2 b 3 +5 b 2 +b+6)6 b 2 4b+2 b(2 b 3 +5 b 2 +b+6)6 b 2 4b+2

Exercise 71

4aa(a+5) 4aa(a+5)

Exercise 72

x3x( x 2 7x1) x3x( x 2 7x1)

Exercise 73

ab(a5)4 a 2 b+2ab2 ab(a5)4 a 2 b+2ab2

Exercise 74

xy(3xy+2x5y)2 x 2 y 2 5 x 2 y+4x y 2 xy(3xy+2x5y)2 x 2 y 2 5 x 2 y+4x y 2

Exercise 75

3h[2h+5(h+2)] 3h[2h+5(h+2)]

Exercise 76

2k[5k+3(1+7k)] 2k[5k+3(1+7k)]

Exercise 77

8a[2a4ab+9(a5ab)] 8a[2a4ab+9(a5ab)]

Exercise 78

6{m+5n[n+3(n1)]+2 n 2 }4 n 2 9m 6{m+5n[n+3(n1)]+2 n 2 }4 n 2 9m

Exercise 79

5[4(r2s)3r5s]+12s 5[4(r2s)3r5s]+12s

Exercise 80

8{9[b2a+6c(c+4)4 c 2 ]+4a+b}3b 8{9[b2a+6c(c+4)4 c 2 ]+4a+b}3b

Exercise 81

5[4(6x3)+x]2x25x+4 5[4(6x3)+x]2x25x+4

Exercise 82

3x y 2 (4xy+5y)+2x y 3 +6 x 2 y 3 +4 y 3 12x y 3 3x y 2 (4xy+5y)+2x y 3 +6 x 2 y 3 +4 y 3 12x y 3

Exercise 83

9 a 3 b 7 ( a 3 b 5 2 a 2 b 2 +6)2a( a 2 b 7 5 a 5 b 12 +3 a 4 b 9 ) a 3 b 7 9 a 3 b 7 ( a 3 b 5 2 a 2 b 2 +6)2a( a 2 b 7 5 a 5 b 12 +3 a 4 b 9 ) a 3 b 7

Exercise 84

8(3a+2) 8(3a+2)

Exercise 85

4(2x3y) 4(2x3y)

Exercise 86

4x y 2 [7xy6(5x y 2 )+3(xy+1)+1] 4x y 2 [7xy6(5x y 2 )+3(xy+1)+1]

Exercises for Review

Exercise 87

((Reference)) Simplify ( x 10 y 8 z 2 x 2 y 6 ) 3 ( x 10 y 8 z 2 x 2 y 6 ) 3 .

Exercise 88

((Reference)) Find the value of 3(49)6(3)1 2 3 3(49)6(3)1 2 3 .

Exercise 89

((Reference)) Write the expression 42 x 2 y 5 z 3 21 x 4 y 7 42 x 2 y 5 z 3 21 x 4 y 7 so that no denominator appears.

Exercise 90

((Reference)) How many (2a+5)'s (2a+5)'s are there in 3x(2a+5) 3x(2a+5) ?

Exercise 91

((Reference)) Simplify 3(5n+6 m 2 )2(3n+4 m 2 ) 3(5n+6 m 2 )2(3n+4 m 2 ) .

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Reuse / Edit:

Reuse or edit collection (?)

Check out and edit

If you have permission to edit this content, using the "Reuse / Edit" action will allow you to check the content out into your Personal Workspace or a shared Workgroup and then make your edits.

Derive a copy

If you don't have permission to edit the content, you can still use "Reuse / Edit" to adapt the content by creating a derived copy of it and then editing and publishing the copy.

| Reuse or edit module (?)

Check out and edit

If you have permission to edit this content, using the "Reuse / Edit" action will allow you to check the content out into your Personal Workspace or a shared Workgroup and then make your edits.

Derive a copy

If you don't have permission to edit the content, you can still use "Reuse / Edit" to adapt the content by creating a derived copy of it and then editing and publishing the copy.