Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Basic Mathematics Review » Summary of Key Concepts

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Endorsed by Endorsed (What does "Endorsed by" mean?)

This content has been endorsed by the organizations listed. Click each link for a list of all content endorsed by the organization.
  • College Open Textbooks display tagshide tags

    This module is included inLens: Community College Open Textbook Collaborative
    By: CC Open Textbook CollaborativeAs a part of collection: "Elementary Algebra"

    Comments:

    "Reviewer's Comments: 'I recommend this book for courses in elementary algebra. The chapters are fairly clear and comprehensible, making them quite readable. The authors do a particularly nice job […]"

    Click the "College Open Textbooks" link to see all content they endorse.

    Click the tag icon tag icon to display tags associated with this content.

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • OrangeGrove display tagshide tags

    This module is included inLens: Florida Orange Grove Textbooks
    By: Florida Orange GroveAs a part of collection: "Elementary Algebra"

    Click the "OrangeGrove" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Featured Content display tagshide tags

    This module is included inLens: Connexions Featured Content
    By: ConnexionsAs a part of collection: "Elementary Algebra"

    Comments:

    "Elementary Algebra covers traditional topics studied in a modern elementary algebra course. Written by Denny Burzynski and Wade Ellis, it is intended for both first-time students and those […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Summary of Key Concepts

Module by: Wade Ellis, Denny Burzynski. E-mail the authors

Summary:

This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr.

A detailed study of arithmetic operations with rational expressions is presented in this chapter, beginning with the definition of a rational expression and then proceeding immediately to a discussion of the domain. The process of reducing a rational expression and illustrations of multiplying, dividing, adding, and subtracting rational expressions are also included. Since the operations of addition and subtraction can cause the most difficulty, they are given particular attention. We have tried to make the written explanation of the examples clearer by using a "freeze frame" approach, which walks the student through the operation step by step.

The five-step method of solving applied problems is included in this chapter to show the problem-solving approach to number problems, work problems, and geometry problems. The chapter also illustrates simplification of complex rational expressions, using the combine-divide method and the LCD-multiply-divide method.

This module presents a summary of the key concepts of the chapter "Rational Expressions".

Summary Of Key Concepts

Rational Expression ((Reference))

A rational expression is an algebraic expression that can be written as the quotient of two polynomials. An example of a rational expression is

x 2 +3x1 7x4 x 2 +3x1 7x4

Domain of a Rational Expression ((Reference))

The domain of a rational expression is the collection of values for which the raticlnal expression is defined. These values can be found by determining the values that will not produce zero in the denominator of the expression.
The domain of x+6 x+8 x+6 x+8 is the collection of all numbers except 8 8 .

Equality Property of Fraction ((Reference))

  1. If a b = c d a b = c d , then ad=bc ad=bc .
  2. If ad=bc ad=bc , then a b = c d a b = c d .

Negative Property of Fractions ((Reference))

a b = a b = a b a b = a b = a b

Reducing a Rational Expression ((Reference))

  1. Factor the numerator and denominator completely.
  2. Divide the numerator and denominator by any factors they have in common.

Common Cancelling Error ((Reference))

x+4 x+7 x +4 x +7 4 7 x+4 x+7 x +4 x +7 4 7
Since x x is not a common factor, it cannot be cancelled.

Multiplying Rational Expressions ((Reference))

  1. Factor all numerators and denominators.
  2. Reduce to lowest terms first by dividing out all common factors.
  3. Multiply numerators together.
  4. Multiply denominators together.
It will be more convenient to leave the denominator in factored form.

Division of Rational Expressions ((Reference))

P Q ÷ R S = P Q · S R = P·S Q·R P Q ÷ R S = P Q · S R = P·S Q·R

Building Rational Expressions ((Reference))

P Q · b b = Pb Qb P Q · b b = Pb Qb

Building rational expressions is exactly the opposite of reducing rational expressions. It is often useful in adding or subtracting rational expressions.
The building factor may be determined by dividing the original denominator into the new denominator. The quotient will be the building factor. It is this factor that will multiply the original numerator.

Least Common Denominator LCD ((Reference))

The LCD is the polynomial of least degree divisible by each denominator. It is found as follows:

  1. Factor each denominator. Use exponents for repeated factors.
  2. Write each different factor that appears. If a factor appears more than once, use only the factor with the highest exponent.
  3. The LCD is the product of the factors written in step 2.

Fundamental Rule for Adding or Subtracting Rational Expressions ((Reference))

To add or subtract rational expressions conveniently, they should have the same denominator.

Adding and Subtracting Rational Expressions ((Reference))

a c + b c = a+b c and a c b c = ab c a c + b c = a+b c and a c b c = ab c
Note that we combine only the numerators.

Rational Equation ((Reference))

A rational equation is a statement that two rational expressions are equal.

Clearing an Equation of Fractions ((Reference))

To clear an equation of fractions, multiply both sides of the equation by the LCD. This amounts to multiplying every term by the LCD.

Solving a Rational Equation ((Reference))

  1. Determine all values that must be excluded as solutions by finding the values that produce zero in the denominator.
  2. Clear the equation of fractions by multiplying every term by the LCD.
  3. Solve this nonfractional equation for the variable. Check to see if any of these potential solutions are excluded values.
  4. Check the solution by substitution.

Extraneous Solution ((Reference))

A potential solution that has been excluded because it creates an undefined expression (perhaps, division by zero) is called an extraneous solution.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks