Skip to content Skip to navigation

OpenStax_CNX

You are here: Home » Content » Getallepatrone (Gauss se metode)

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

In these lenses

  • GETSenPhaseMaths display tagshide tags

    This module is included inLens: Siyavula: Mathematics (Gr. 7-9)
    By: Siyavula

    Review Status: In Review

    Click the "GETSenPhaseMaths" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Getallepatrone (Gauss se metode)

Module by: Siyavula Uploaders. E-mail the author

WISKUNDE

Getalpatrone

OPVOEDERS AFDELING

Memorandum

8.

c) (i) 465

(ii) 1 508

b).

LEERDERS AFDELING

Inhoud

AKTIWITEIT: Getallepatrone (Gauss se metode) [LU 2.2]

8. Het jy geweet?

Karl Friedrich Gauss (1777 - 1855) is op 9-jarige ouderdom deur sy opvoeder gevra om die getalle 1 tot 100 op te tel. Hy was in ’n rekordtyd klaar, en die metode wat hy gebruik het, staan vandag bekend as "Gauss se metode".

a) Hoe sou JY bogenoemde probleem oplos? ________________________________

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

b) Kom ons kyk hoe Gauss die som bereken het!

Figure 1
Figure 1 (graphics1.png)
  • Elke paar, bv. 1 + 100 of 3 + 98, se somtotaal is 101. Daar is 50 pare in totaal. Die som is dus 50 × 101 = 5 050. Maklik, né!

c) Gebruik nou Gauss se metode en bepaal:

i) die som van die getalle van 1 tot 30

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

ii) die som van die getalle van 5 tot 55

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

Assessering

Leeruitkomste 2:Die leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel en probleme op te los deur algebraïese taal en vaardighede te gebruik.

Assesseringstandaard 2.2: Dit is duidelik wanneer die leerder verwantskappe of reëls wat waargeneem is, in eie woorde beskryf, verduidelik en bewys.

Content actions

Download module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks