Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » Wiskunde Graad 7 » Getallepatrone (Terme)

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

In these lenses

  • GETSenPhaseMaths display tagshide tags

    This module and collection are included inLens: Siyavula: Mathematics (Gr. 7-9)
    By: Siyavula

    Module Review Status: In Review
    Collection Review Status: In Review

    Click the "GETSenPhaseMaths" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Getallepatrone (Terme)

Module by: Siyavula Uploaders. E-mail the author

WISKUNDE

Getalpatrone

OPVOEDERS AFDELING

Memorandum

LEERDERS AFDELING

Inhoud

AKTIWITEIT: Getallepatrone (Terme) [LU 2.1, LU 2.3.1, LU 2.3.2]

9. Het jy geweet?

Die getalle in die getalry word ook TERME genoem.

10. Probleem

Maak jou eie getalry.

Werk saam met ’n maat deur die volgende voorbeeld:

  • Teken eers ’n vloeidiagram met twee operator-blokkies:
  • Vul die antwoorde regs in.

Bv.

n-waardes

Figure 1
Figure 1 (Spinnekop.jpg)

Jou getalry is 7 ; 12 ; 17 ; 22 ; 27

Jou reël sal dus wees:

Figure 2
Figure 2 (graphics1.png)

Dus: T2 = (5 × 2) + 2 = 12

T12 = (5 × 12) + 2 = 62

  • As jy seker is jy verstaan bogenoemde, stel jou eie getalry saam.

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

  • Also compile three questions of your own and ask a friend to answer them.

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

VERSTAAN JY DIE VOORAFGAANDE WERK?

Table 1
 
  • Voltooi die volgende deur ’n regmerkie in die toepaslike blokkie te maak:
onseker redelik seker baie seker  
 
  • Ek kan verskillende patrone met getalle raaksien
       
 
  • Ek kan voorspel wat die daaropvolgende patroon sal wees
       
 
  • Ek kan die Fibonacci-ry verklaar en verder voltooi
       
 
  • Ek kan die Fibonacci-spiraal teken
       
 
  • Ek kan Pascal se driehoek aan ’n maat verduidelik
       
 
  • Ek kan ‘n driehoekgetal m.b.v. die formule bepaal
       
 
  • Ek kan die som van getalle bereken deur van Gauss se metode gebruik te maak
       
 
  • Ek kan my eie getalrye saamstel
       

Assessering

Leeruitkomste 2:Die leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel en probleme op te los deur algebraïese taal en vaardighede te gebruik.

Assesseringstandaard 2.1: Dit is duidelik wanneer die leerder numeriese en meetkundige patrone ondersoek en uitbrei op soek na ‘n verwantskap of reëls, insluitend patrone.

Assesseringstandaard 2.3: Dit is duidelik wanneer die leerder voorstellings maak van en verwantskappe tussen veranderlikes gebruik sodat inset- en/of uitsetwaardes op ‘n verskeidenheid maniere bepaal kan word deur die gebruik van:

2.3.1: woordelikse beskrywings;

2.3.2: vloeidiagramme.

Collection Navigation

Content actions

Download:

Collection as:

EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks