# OpenStax-CNX

You are here: Home » Content » Wiskunde Graad 7 » Area (Kopkrapper)

### Lenses

What is a lens?

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

#### In these lenses

• GETSenPhaseMaths

This module and collection are included inLens: Siyavula: Mathematics (Gr. 7-9)
By: Siyavula

Module Review Status: In Review
Collection Review Status: In Review

Click the "GETSenPhaseMaths" link to see all content selected in this lens.

Click the tag icon to display tags associated with this content.

### Recently Viewed

This feature requires Javascript to be enabled.

### Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.

Inside Collection (Course):

Course by: Siyavula Uploaders. E-mail the author

# Area (Kopkrapper)

Module by: Siyavula Uploaders. E-mail the author

## Memorandum

10.

a) Ja, oppervlakte van al 3 figure dieselfde

b) oppervlakte = (helfte x basis) x hoogte

11.1 1 867 km²

11.2 530 m²

11.3 9 m by 8 m

12.

13.1

a) 3 en ‘n kwart vierkante cm

b) 5 vierkante cm

13.2 A

14.1

a) 64 cm²

b) 180 cm²

c) 81 m²

d) 200 m²

14.2

a) 42 m²

b) 48 cm²

c) 65 cm²

d) 64 m²

## Inhoud

### AKTIWITEIT: Area (Kopkrapper) [LO 4.2, LO 1.9, LO 4.5]

10. KOPKRAPPER!

’n Boer verdeel sy grond soos volg tussen sy drie kinders:

a) Was die boer regverdig? __________________________ Motiveer jou antwoord:

_____________________________________________________________________

_____________________________________________________________________

b) Kan jy hieruit ’n formule neerskryf om die oppervlakte van ’n driehoek te bereken?

_____________________________________________________________________

11.1 Bereken die oppervlakte van die boer se plaas sonder die dam.

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

11.2 Wat is die oppervlakte van dié lusernkamp op die boer se plaas?

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

11.3 As die boer ’n reghoekige kamp met ’n oppervlakte van 72 m2 wil bou, maar die omtrek moet die minimum wees (vir die lengte van die draad), wat moet die afmetings van die kamp wees?

_____________________________________________________________________

12. ’n Reghoekige rugbyveld het ’n lengte van 110 m en ’n breedte van 60 m. Wat sal dit kos om gras te plant teen R6,45 per vierkante meter?

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

13.1 As elke vierkant 1 cm2 is, wat is die oppervlakte van die ingekleurde deel?

a)

_____________________________________

b)

_____________________________________

13.2 Watter figuur het die grootste oppervlakte: A of B?

A

_____________________________________

B

_____________________________________

14. KOPKRAPPERS!

• Werk saam met ’n maat.

14.1 Kan julle die oppervlakte van die ingekleurde dele van elke figuur bepaal?

a)

_____________________________________

_____________________________________

_____________________________________

b)

_____________________________________

_____________________________________

_____________________________________

c)

_____________________________________

_____________________________________

_____________________________________

d)

_____________________________________

_____________________________________

_____________________________________

14.2 Bereken die oppervlakte van die volgende figure:

a)

_____________________________________

_____________________________________

_____________________________________

_____________________________________

b)

_____________________________________

_____________________________________

_____________________________________

_____________________________________

c)

_____________________________________

_____________________________________

_____________________________________

_____________________________________

d)

_____________________________________

_____________________________________

_____________________________________

_____________________________________

15. KLASBESPREKING

• Kom ons gesels as ’n klas oor die volgende:

15.1 Jul skool wil ’n nuwe rekenaarlokaal oprig. Die twee planne wat voorgelê is, lyk so:

A

B

• Bespreek:

a) Vir watter plan is die meeste bakstene nodig? Hoekom?

b) Watter plan sal die meeste rekenaars kan huisves? Motiveer.

c) Watter plan sal die duurste wees om te bou? Hoekom?

15.2 ’n Plan is ook vir ’n swembad vir die skool ingedien:

a) Wat sal met die oppervlakte gebeur as die omtrek dieselfde bly, maar:

(i) die lengte vermeerder en die breedte verminder?

(ii) die lengte verminder en die breedte vermeerder?

b) Wanneer sal die swembad ’n maksimum oppervlakte hê?

## Assessering

Leeruitkomste 4:Die leerder is in staat om gepaste meeteenhede, instrumente en formules in ‘n verskeidenheid kontekste te gebruik.

Assesseringstandaard 4.2: Dit is duidelik wanneer die leerder probleme oplos;

Assesseringstandaard 4.5: Dit is duidelik wanneer die leerder berekenings doen deur die geskikte formules te gebruik;

Leeruitkomste 1:Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.9: Dit is duidelik wanneer die leerder berekenings doen deur die geskikte formules te gebruik.

## Content actions

EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

#### Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

#### Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks