
Connexions module: m22204 1

Conditional Compilation
∗

Kenneth Leroy Busbee

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

An introduction and example of conditional compilation as used within the C++ programming lan-

guage.

1 Overview

As you proceed in your programming career, the problems/tasks that need solving become more complex.
The documentation of the algorithm done in pseudo code (or some other method) will still need to be con-
verted into a programming solution. Inevitably, when writing that source code mistakes will be introduced.
When learning the syntax of a new programming language, programmers sometimes automatically think in
their old language syntax, and make mistakes that are sometimes hard to detect.

The concept of using a �ag to either activate or have remain dormant certain lines of code designed
solely to help with the debugging of a program has existed since almost the beginning of modern computer
programming (1950's). One of the debugging tools available within C++ is conditional compilation. For
our �ag, we would use a de�ned constant like:

#define DEBUG 1

Then using another compiler directive pair, the #if and #endif, we can have the compiler during the
pre-processor either include or not include one or more lines of code.

#if DEBUG

cout � "\n***** DEBUG Code ** Hi mom!";

#endif

Of course saying "Hi mom!" is not very useful for debugging your code. However, you can use test data
with conditional compilation. A series of input data values and a series of output predictors can be placed
in the program. Then you can turn on the debug feature or turn them o� with your debugging �ag.

You should study the demonstration program in conjunction with this module.

∗Version 1.5: May 11, 2010 11:42 am -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m22204/1.5/

Connexions module: m22204 2

2 Demonstration Program in C++

2.1 Creating a Folder or Sub-Folder for Source Code Files

Depending on your compiler/IDE, you should decide where to download and store source code �les for
processing. Prudence dictates that you create these folders as needed prior to downloading source code �les.
A suggested sub-folder for the Bloodshed Dev-C++ 5 compiler/IDE might be named:

• Demo_Programs

If you have not done so, please create the folder(s) and/or sub-folder(s) as appropriate.

2.2 Download the Demo Program

Download and store the following �le(s) to your storage device in the appropriate folder(s). Following the
methods of your compiler/IDE, compile and run the program(s). Study the source code �le(s) in conjunction
with other learning materials. You may need to right click on the link and select "Save Target As" in order
to download the �le.

Download from Connexions: Demo_Conditional_Compliation.cpp1

3 De�nitions

De�nition 1: conditional compilation
A compiler directive that includes or excludes lines of code based on a Boolean expression.

1See the �le at <http://cnx.org/content/m22204/latest/Demo_Conditional_Compilation.cpp>

http://cnx.org/content/m22204/1.5/

