Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Wiskunde Graad 5 » Om vorentoe in intervalle te tel

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

In these lenses

  • GETIntPhaseMaths display tagshide tags

    This module and collection are included inLens: Siyavula: Mathematics (Gr. 4-6)
    By: Siyavula

    Module Review Status: In Review
    Collection Review Status: In Review

    Click the "GETIntPhaseMaths" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Om vorentoe in intervalle te tel

Module by: Siyavula Uploaders. E-mail the author

WISKUNDE

Getalbegrip, Optelling en Aftrekking

OPVOEDERS AFDELING

Memorandum

1. 6; 12; 18; 24; 30; 36; 42; 48; 54; 60; 6; 72

7; 14; 21; 28; 35; 42; 49; 56; 63; 70; 7; 84

8; 16; 24; 32; 40; 48; 56; 64; 72; 80; 8; 96

9; 18; 27; 36; 45; 54; 63; 72; 81; 90; 9; 108

2. 72; 24; 48; 96; 108; 60

3. 1; 2; 5; 10

1; 3; 5; 15

1; 2; 4; 8; 16

1; 2; 3; 4; 6; 8; 12; 24

1; 2; 3; 5; 6; 10; 15; 30

4. 13; 2; 17; 11; 5; 23; 7; 19; 3; 29

5. 5.1

Figuur 1
Figuur 1 (graphics1.png)

5.2 b)

6

9

4

2

Figuur 2
Figuur 2 (graphics2.png)

1. 10 000

2. ses en twintigduisend vierhonderd en nege

3. 300

4. 5 000

5. 6; 12; 18; 24

6. 1; 2; 3; 4; 6; 12

7. waar

waar

TOETS 1

1. 6 000 + 400 + 90 + 8

  1. (1. × 1 000) + (4 × 100) + (9 × 10) + (8 × 1)

2. a) 200

b) 70 000

3. a) 2 674

b) 16 537

  1. a) 800

4. a) 7 420; 7 440

b) 16 775; 16 750

6. a) >

b) >

7. a) ses en sewentigduisend en ag

b) 68 439

8. a) (i) 1 800

  1. (i) 34 700

b) (i) 5 000

  1. (i) 78 000

9 a) 6; 12; 18; 24

b) 1; 3; 17; 19

c) 1; 2; 3; 4; 6; 12

d) 2; 17; 19

e) 2; 4; 6; 12; 18; 24; 40

LEERDERS AFDELING

Inhoud

AKTIWITEIT: Om vorentoe in intervalle te tel [LU 1.1]

Om getalle te herken, voor te stel, hul te beskryf en te vergelyk [LU 1.3]

1. KOM ONS JAAG RESIES!

Die volgende aktiwiteit sal jou help om jou vaardighede om dieselfde getal elke keer by te tel of af te trek, te verbeter. So leer jy ook sommer jou x-tafels, wat noodsaaklik is om korrek te kan vermenigvuldig en deel.

Werk saam met ’n maat. Julle het ’n stophorlosie nodig. Jy moet so vinnig as wat jy kan, die volgende lere "klim" deur die korrekte antwoorde te gee. Dan is dit weer jou maat se beurt. Die een wat dit die vinnigste KORREK kan doen, is die wenner! (Kontroleer met ‘n sakrekenaar).

BEGIN BO EN WERK TOT ONDER:

Figuur 3
Figuur 3 (graphics3.png)

BEGIN NOU ONDER EN WERK OP:

Veelvoude

ONTHOU JY NOG?

Die antwoorde wat jy hierbo gekry het, noem ons VEELVOUDE van die 6x, 7x, 8x en 9x-tafel.

’n VEELVOUD is ’n getal wat ons kry as ons die gegewe getal (bv. 6) met ’n ander getal of ’n reeks getalle vermenigvuldig.

Bv. Die veelvoude van 5 is 5 ; 10 ; 15 ; 20 ; 25 ; ens.

2. Het jy geweet? Veelvoude help jou om breuke korrek op te tel! Dit is dus belangrik dat jy so gou as moontlik al die veelvoude van jou x-tafels sal ken. Kom ons oefen! Kleur die veelvoude van 12 in.

Figuur 4
Figuur 4 (graphics4.png)

FAKTORE

HET JY GEWEET?

’n Faktor is ’n getal wat presies in ’n gegewe getal kan indeel.

As ons bv. getalle soek wat presies in 12 kan indeel, kry ons 1 ; 2 ; 3 ; 4 ; 6 en 12. Hierdie getalle is FAKTORE van 12.

Wenk: Dink in "pare"1 × 12 = 122 × 6 = 123 × 4 = 12

3. Dit is belangrik om voldoende kennis van faktore te hê, omdat dit jou kan help om korrek te deel en om breuke te vereenvoudig. Kyk of jy die tabel hieronder kan voltooi:

Tabel 1
  Getal Faktore
Bv. 8 1 ; 2 ; 4 ; 8
  10 ..................................................
  15 ..................................................
  16 ..................................................
  24 ..................................................
  30 ..................................................

Vra ‘n maat om jou te assesseer!

  • Werk saam met ’n maat.
  • Beantwoord die volgende vrae en vra jou maat om ’n regmerkie in die toepaslike kolom te maak:

Priemgetalle

Let goed op:

’n PRIEMGETAL het net 2 faktore: 1 en die getal self.

’n PRIEMGETAL is groter as 1.

2, 3 en 5 is voorbeelde van PRIEMGETALLE, want net 1 en die getal self kan presies in 2, 3 en 5 deel.

4. Kleur nou die "priemgetal-blare" groen in.

Figuur 5
Figuur 5 (graphics5.png)

5. KOPKRAPPER!

5.1 Plaas die getalle 1 tot 6 in die diagram sodat die som van die verskillende sye gelyk is.

Figuur 6
Figuur 6 (graphics6.png)

5.2 Plaas die getalle 1 tot 9 in die diagram sodat die som van die asse gelyk is.

Figuur 7
Figuur 7 (graphics7.png)

Kom ons kyk hoe goed verstaan jy die voorafgaande werk!

Voltooi die volgende so akkuraat moontlik:

1. Watter getal is 10 meer as 9 990? _____________________________(1)

2. Skryf die volgende getal in woorde: 26 409

__________________________________________________________________ (1)

3. Rond af tot die naaste 100: 325 _________________________________(1)

4. Rond af tot die naaste 1 000: 4 500______________________________ (1)

5. Omkring die veelvoude van 6:

6 ; 9 ; 12 ; 15 ; 18 ; 21 ; 24 (2)

6. Skryf al die faktore van 12 neer.

_________________________________________________________________ (2)

7. Waar of Onwaar: 13 is ’n priemgetal _____________________________(1)

1 is nie ’n priemgetal nie ____________________________(1)

10

Hoe het jy hierdie keer gevaar?

  • Kleur die korrekte prentjie in.
Figuur 8
Figuur 8 (graphics8.png)

TOETS

1. Skryf die volgende getal in uitgebreide notasie:

6 498 = _____________ + _____________ + ____________ + ____________

= (____ × ____) + (____ ×____) + (____×____) + (____×____) (4)

2. Wat is die waarde van die vetgedrukte syfer?

2.1 48 217 _________________________________________________________

2.2 76 891 ______________________________________________________ (2)

3. Vul die ontbrekende antwoorde in:

3.1 2 684 is 10 meer as ____________________________________________

3.2 16 437 is 100 minder as ___________________________________________

3.2 80 000 is 100 keer meer as ___________________________________(3)

4. Voltooi die volgende getallepatrone:

4.1 7 380 ; 7 400 ; ______________ ; _______________

4.2 16 825 ; 16 800 ; ______________ ; ______________ (4)

5. Rangskik die volgende getalle van klein na groot:

8 008 ; 8 800 ; 8 080 ; 8 808

__________________________________________________________________ (2)

6. Vul in < ; > of = :

6.1 4 876 * 4 000 + 700 + 80 + _____________________________

6.2 (9 × 8) + 4 * (81 ÷ 9) ___________________________________ (2)

7. Skryf die volgende getal in woorde:

76 008

__________________________________________________________________ (1)

7.1 Skryf in syfers:

ag en sestigduisend vierhonderd nege en dertig

__________________________________________________________________ (1)

8. Rond af:

8.1 tot die naaste 100:

i) 1 764 _____________________________

ii) 34 712 _____________________________ (2)

8.2 tot die naaste 1 000:

i) 4 632 _____________________________

ii) 78 099 _____________________________ (2)

9. Kies uit die gegewe getalle in die blok:

Figuur 9
Figuur 9 (graphics9.png)

9.1 die veelvoude van 6

__________________________________________________________________ (2)

9.2 enige twee onewe getalle

__________________________________________________________________ (1)

9.3 die faktore van 12

__________________________________________________________________ (2)

9.4 enige twee priemgetalle

__________________________________________________________________ (1)

9.5 enige twee ewe getalle

__________________________________________________________________ (1)

Ek het ___________________________________ uit 30 !!

Kleur in: Ek voel

Tabel 2
BAIE GELUKKIG EN TEVREDE
GELUKKIG
ONGELUKKIG
EK KAN BETER DOEN

Assessering

Leeruitkomste 1:Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.1: Dit is duidelik wanneer die leerder aan- en terugtel in heelgetal-intervalle en -breuke;

Assesseringstandaard 1.3: Dit is duidelik wanneer die leerder getalle herken en voorstel sodat dit beskryf en vergelyk kan word:

1.3.1 heelgetalle tot minstens 6-syfergetalle;

1.3.6 veelvoude van enkelsyfergetalle tot minstens 100;

1.3.7 faktore van minstens enige 2-syferheelgetal.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks