Skip to content Skip to navigation

OpenStax-CNX

You are here: Home » Content » Om wette te herken, te beskryf en te gebruik

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

In these lenses

  • GETIntPhaseMaths display tagshide tags

    This module is included inLens: Siyavula: Mathematics (Gr. 4-6)
    By: Siyavula

    Review Status: In Review

    Click the "GETIntPhaseMaths" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Om wette te herken, te beskryf en te gebruik

Module by: Siyavula Uploaders. E-mail the author

WISKUNDE

Getalbegrip, Optelling en Aftrekking

Optelling

OPVOEDERS AFDELING

Memorandum

1.

1.1 9 + (8 + 7) = 24

1.2 121 + 32 = 153 / 140 + 13 = 153

1.3338 + 100 = 438 / 396 + 42 = 438

LEERDERS AFDELING

Inhoud

AKTIWITEIT: Om wette te herken, te beskryf en te gebruik [LO 1.12]

1. Net soos elke land sekere wette het om die bestuur van die land te laat vlot, is daar in Wiskunde ook sekere “wette” of “eienskappe” wat jou kan help om antwoorde makliker te bereken. So is daar bv. die kommutatiewe en assosiatiewe eienskap van optelling. Voltooi die volgende en kyk hoe dit werk!

1.1 (9 + 8) + 7 = 9 + _______________ = _______________

1.2 121 + (19 + 13) = 121 + _______________ = _______________

(121 + 19) + 13 = _______________ + 13 = _______________

1.3 338 + (58 + 42) = 338 + _______________ = _______________

(338 + 58) + 42 = _______________ + 42 = _______________

1.4 Bespreek met jou klasmaats: Watter groepering van opteltalle was die maklikste?

Hoekom?

HET JY GEWEET?

Wanneer ons getalle wil optel, kan ons die antwoord vinnig bereken deur die getalle AF TE ROND!

Assessering

Leeruitkomste 1:Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.12: Dit is duidelik wanneer die leerder herken, beskryf en gebruik:

1.12.3 die kommutatiewe, assosiatiewe en distributiewe eienskappe van heelgetalle (leerders behoort in staat te wees om die eienskappe te gebruik sonder om noodwendig die name te ken).

Content actions

Download module as:

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks