Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Wiskunde Graad 5 » Om die gelykwaardigheid en geldigheid van verskillende voorstellings te bepaal

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

In these lenses

  • GETIntPhaseMaths display tagshide tags

    This module and collection are included inLens: Siyavula: Mathematics (Gr. 4-6)
    By: Siyavula

    Module Review Status: In Review
    Collection Review Status: In Review

    Click the "GETIntPhaseMaths" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Om die gelykwaardigheid en geldigheid van verskillende voorstellings te bepaal

Module by: Siyavula Uploaders. E-mail the author

WISKUNDE

Getalbegrip, Optelling en Aftrekking

Aftrekking

OPVOEDERS AFDELING

Memorandum

2.1 en 2.2 eie antwoord

LEERDERS AFDELING

Inhoud

AKTIWITEIT: Om die gelykwaardigheid en geldigheid van verskillende voorstellings te bepaal [LU 2.6]

Om strategieë te gebruik om oplossings te kontroleer [LU 1.11]

  • By aktiwiteit 3.8 het julle jul eie tegnieke en strategieë gebruik om die probleme op te los. In jul terugvoering aan die klas het jul seker gesien dat daar meer as een manier is waarop ons getalle kan aftrek. Verdeel in groepe van drie. Lees die volgende probleem goed deur en werk dan saam deur die verskillende metodes om dit op te los:

32 564 mans en 29 436 dames het na ’n rugbywedstryd gaan kyk.

  • Hoeveel meer mans as dames was daar?

1.1 Ek hou daarvan om by te tel:

32 564 – 29 436

Dus:29 436 + 64 = 29 500

29 500 + 500 = 30 000

30 000 + 2 564 = 32 564

64 + 500 + 2 564 = 3 128

Daar was dus 3 128 meer mans as dames.

1.2 Ek rond die tweede getal af tot die naaste 100:

32 564 – 29 436

Dus: 32 564 – 29 400 = 3 164

3 164 – 36 = 3 128

Die antwoord is 3 128 meer mans.

1.3 Ek verkies om die aftrekker af te rond tot die naaste 1 000:

32 564 – 29 436

Dus: 32 564 – 29 000 = 3 564

3 564 – 436 = 3 128

1.4 Ek werk die verskil “stuk vir stuk” (stap vir stap) uit:

32 564 – 29 436

Dus: 32 000 – 29 000 = 3 000

564 – 436 = 128

3000 + 128 = 3 128

1.5 Ek skryf die getalle eers in uitgebreide notasie:

32 564 – 29 436

Dus: 30 000 + 2 000 + 500 + 60 + 4

- 20 000 + 9 000 + 400 + 30 + 6

Nou hergroepeer ek:

20 000 + 12 000 + 500 + 50 + 14

- 20 000 + 9 000 + 400 + 30 + 6

0 + 3 000 + 100 + 20 + 8

Die antwoord is dus 3 128

1.6 Ek bereken die verskil deur met negatiewe getalle te werk:

32 564 – 29 436

Dus: 30 000 – 20 000 = 10 000

2 000 – 9 000 = – 7 000 (ek moet nog 7 000 aftrek)

500 – 400 = 100

60 – 30 = 30

4 – 6 = – 2 (ek moet nog 2 aftrek)

Die verskil is dus:

10 000 – 7 000 + 100 + 30 – 2 = 3 128

2. 2.1 Watter van bogenoemde metodes is vir JOU die maklikste? _____________________________________________________________________

Hoekom? _______________________________________________________________

_____________________________________________________________________

__________________________________________________________________________________________________________________________________________

2.2 Kan julle groep aan nog ‘n metode dink om die verskil te bereken?

_____________________________________________________________________

__________________________________________________________________________________________________________________________________________

Assessering

Leeruitkomste 1:Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.11: Dit is duidelik wanneer die leerder ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid van oplossings te beoordeel.

Leeruitkomste 2:Die leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel en probleme op te los deur algebraïese taal en vaardighede te gebruik.

Assesseringstandaard 2.6: Dit is duidelik wanneer die leerder bepaal, deur bespreking en vergelyking, die ekwivalensie van verskillende beskrywings van dieselfde verwantskap of reël wat soos volg voorgestel word:

2.6.1 woordeliks;

2.6.2 in vloeidiagramme;

2.6.3 met getalsinne.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks