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Abstract

This collection comprises Chapter 1 of the book A Wavelet Tour of Signal Processing, The Sparse Way
(third edition, 2009) by Stéphane Mallat. The book's website at Academic Press is http://www.elsevier.com/wps/�nd/bookdescription.cws_home/714561/description#description
The book's complementary materials are available at http://wavelet-tour.com

Analog-to-digital signal conversion is the �rst step of digital signal processing. Chapter 3 explains that
it amounts to projecting the signal over a basis of an approximation space. Most often, the resulting digital
representation remains much too large and needs to be further reduced. A digital image typically includes
more than 106 samples and a CDmusic recording has 40×103 samples per second. Sparse representations that
reduce the number of parameters can be obtained by thresholding coe�cients in an appropriate orthogonal
basis. E�cient compression and noise-reduction algorithms are then implemented with simple operators in
this basis.

1 Stochastic versus Deterministic Signal Models

A representation is optimized relative to a signal class, corresponding to all potential signals encountered in
an application. This requires building signal models that carry available prior information.

A signal f can be modeled as a realization of a random process F , the probability distribution of which
is known a priori. A Bayesian approach then tries to minimize the expected approximation error. Linear
approximations are simpler because they only depend on the covariance. Chapter 9 shows that optimal
linear approximations are obtained on the basis of principal components that are the eigenvectors of the
covariance matrix. However, the expected error of nonlinear approximations depends on the full probability
distribution of F . This distribution is most often not known for complex signals, such as images or sounds,
because their transient structures are not adequately modeled as realizations of known processes such as
Gaussian ones.

To optimize nonlinear representations, weaker but su�ciently powerful deterministic models can be elab-
orated. A deterministic model speci�es a set Θ, where the signal belongs. This set is de�ned by any prior
information�for example, on the time-frequency localization of transients in musical recordings or on the
geometric regularity of edges in images. Simple models can also de�ne Θ as a ball in a functional space, with
a speci�c regularity norm such as a total variation norm. A stochastic model is richer because it provides the
probability distribution in Θ. When this distribution is not available, the average error cannot be calculated
and is replaced by the maximum error over Θ. Optimizing the representation then amounts to mini-mizing
this maximum error, which is called a minimax optimization.
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2 Sampling with Linear Approximations

Analog-to-digital signal conversion is most often implemented with a linear approximation operator that
�lters and samples the input analog signal. From these samples, a linear digital-to-analog converter recovers
a projection of the original analog signal over an approximation space whose dimension depends on the
sampling density. Linear approximations project signals in spaces of lowest possible dimensions to reduce
computations and storage cost, while controlling the resulting error.

2.1 Sampling Theorems

Let us consider �nite energy signals ‖ f‖2 =
∫
| f (x) |2 dx of �nite support, which is normalized to [0, 1] or

[0, 1]2 for images. A sampling process implements a �ltering of f (x) with a low-pass impulse response φs (x)
and a uniform sampling to output a discrete signal:

f [n] = f[U+2606]φs (ns) for 0 ≤ n < N. (1)

In two dimensions, n = (n1, n2) and x = (x1, x2). These �ltered samples can also be written as inner
products:

f[U+2606]φs (ns) =
∫
f (u) φs (ns− u) du =< f (x) , φs (x− ns) > (2)

with φs (x) = φs (−x). Chapter 3 explains that φs is chosen, like in the classic Shannon�Whittaker sampling
theorem, so that a family of functions {φs (x− ns)}1≤n≤N is a basis of an appropriate approximation space

UN. The best linear approximation of f in UN recovered from these samples is the orthogonal projection fN
of f in UN, and if the basis is orthonormal, then

fN (x) =
∑N−1
n=0 f [n] φs (x− ns) . (3)

A sampling theorem states that if f ∈ UN then f = fN so recovers f (x) from the measured samples.
Most often, f does not belong to this approximation space. It is called aliasing in the context of Shannon�
Whittaker sampling, where UN is the space of functions having a frequency support restricted to the N lower
frequencies. The approximation error ‖ f − fN‖

2
must then be controlled.

2.2 Linear Approximation Error

The approximation error is computed by �nding an orthogonal basis B = {gm (x)}0≤m<+∞ of the whole

analog signal space L2 (R) [0, 1]2, with the �rst N vector {gm (x)}0≤m<N that de�nes an orthogonal basis of
UN. Thus, the orthogonal projection on UN can be rewritten as

fN (x) =
N−1∑
m=0

< f, gm > gm (x) . (4)

Since f =
∑+∞
m=0 < f, gm > gm, the approximation error is the energy of the removed inner products:

εl (N, f) =‖ f − fN‖
2 =

+∞∑
m=N

| < f, gm > |2. (5)

This error decreases quickly when N increases if the coe�cient amplitudes | < f, gm > | have a fast decay
when the index m increases. The dimension N is adjusted to the desired approximation error.

Figure (a) shows a discrete image f [n] approximated with N = 2562 pixels. Figure (c) displays a
lower-resolution image fN/16 projected on a space UN/16 of dimension N/16, generated by N/16 large-scale
wavelets. It is calculated by setting all the wavelet coe�cients to zero at the �rst two smaller scales. The
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approximation error is ‖ f − fN/16‖
2
/‖ f ‖2 = 14 × 10−3. Reducing the resolution introduces more blur

and errors. A linear approximation space UN corresponds to a uniform grid that approximates precisely
uniform regular signals. Since images f are often not uniformly regular, it is necessary to measure it at a
high-resolution N. This is why digital cameras have a resolution that increases as technology improves.

3 Sparse Nonlinear Approximations

Linear approximations reduce the space dimensionality but can introduce important errors when reducing
the resolution if the signal is not uniformly regular, as shown by Figure (c). To improve such approxima-
tions, more coe�cients should be kept where needed�not in regular regions but near sharp transitions and
edges.This requires de�ning an irregular sampling adapted to the local signal regularity. This optimized
irregular sampling has a simple equivalent solution through nonlinear approximations in wavelet bases.

Nonlinear approximations operate in two stages. First, a linear operator approximates the analog signal
f with N samples written f [n] = f[U+2606]φs (ns). Then, a nonlinear approximation of f [n] is computed
to reduce the N coe�cients f [n] to M � N coe�cients in a sparse representation.

The discrete signal f can be considered as a vector of CN . Inner products and norms in CN are written

< f, g >=
N−1∑
n=0

f [n] g∗[n] and ‖ f ‖2 =
N−1∑
n=0

| f [n] |2. (6)

To obtain a sparse representation with a nonlinear approximation, we choose a new orthonormal basis
B = {gm [n]}m∈Γ of CN , which concentrates the signal energy as much as possible over few coe�cients.
Signal coe�cients {< f, gm >}m∈Γ are computed from the N input sample values f [n] with an orthogonal
change of basis that takes N2 operations in nonstructured bases. In a wavelet or Fourier bases, fast algorithms
require, respectively, O (N) and O (Nlog2N) operations.

3.1 Approximation by Thresholding

For M < N , an approximation fM is computed by selecting the �best� M < N vectors within B. The
orthogonal projection of f on the space Vλ generated by M vectors {gm}m∈Λ in B is

fλ =
∑
m∈λ < f, gm > gm. (7)

Since f =
∑
m∈γ < f, gm > gm, the resulting error is

‖ f − fλ‖2 =
∑
m∈/λ | < f, gm > |2. (8)

We write |λ| the size of the set λ. The best M = |λ| term approximation, which minimizes ‖ f − fλ‖2, is
thus obtained by selecting the M coe�cients of largest amplitude. These coe�cients are above a threshold
T that depends on M :

fM = fλT
=

∑
m∈λT

< f, gm > gm with λT = {m ∈ γ : | < f, gm > | ≥ T}. (9)

This approximation is nonlinear because the approximation set λT changes with f . The resulting approxi-
mation error is:

εn (M,f) =‖ f − fM‖2 =
∑
m∈/ΛT

| < f, gm > |2. (10)

(b) shows that the approximation support λT of an image in a wavelet orthonormal basis depends on the
geometry of edges and textures. Keeping large wavelet coe�cients is equivalent to constructing an adaptive
approximation grid speci�ed by the scale�space support λT. It increases the approximation resolution
where the signal is irregular. The geometry of λT gives the spatial distribution of sharp image transitions
and edges, and their propagation across scales. Chapter 6 proves that wavelet coe�cients give important
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information about singularities and local Lipschitz regularity. This example illustrates how approximation
support provides �geometric� information on f , relative to a dictionary, that is a wavelet basis in this
example.

(d) gives the nonlinear wavelet approximation fM recovered from theM = N/16 large-amplitude wavelet

coe�cients, with an error ‖ f − fM‖2/‖ f ‖2 = 5 × 10−3. This error is nearly three times smaller than the
linear approximation error obtained with the same number of wavelet coe�cients, and the image quality is
much better.

An analog signal can be recovered from the discrete nonlinear approxima-tion fM :

fM (x) =
N−1∑
n=0

fM [n] φs (x− ns) . (11)

Since all projections are orthogonal, the overall approximation error on the original analog signal f (x) is
the sum of the analog sampling error and the discrete nonlinear error:

‖ f − fM‖
2 =‖ f − fN‖

2 + ‖ f − fM ‖2 = εl (N, f) + εn (M,f) . (12)

In practice, N is imposed by the resolution of the signal-acquisition hardware, and M is typically adjusted
so that εn (M,f) ≥ εl (N, f).

3.2 Sparsity with Regularity

Sparse representations are obtained in a basis that takes advantage of some form of regularity of the input
signals, creating many small-amplitude coe�cients. Since wavelets have localized support, functions with
isolated singularities produce few large-amplitude wavelet coe�cients in the neighborhood of these singular-
ities. Nonlinear wavelet approximation produces a small error over spaces of functions that do not have �too
many� sharp transitions and singularities. Chapter 9 shows that functions having a bounded total variation
norm are useful models for images with nonfractal (�nite length) edges.

Edges often de�ne regular geometric curves. Wavelets detect the location of edges but their square
support cannot take advantage of their potential geometric regularity. More sparse representations are
de�ned in dictionaries of curvelets or bandlets, which have elongated support in multiple directions, that
can be adapted to this geometrical regularity. In such dictionaries, the approximation support λT is smaller
but provides explicit information about edges' local geometrical properties such as their orientation. In this
context, geometry does not just apply to multidimensional signals. Audio signals, such as musical recordings,
also have a complex geometric regularity in time-frequency dictionaries.

4 Compression

Storage limitations and fast transmission through narrow bandwidth channels require compression of sig-
nals while minimizing degradation. Transform codes compress signals by coding a sparse representation.
Chapter 10 introduces the information theory needed to understand these codes and to optimize their per-
formance.

In a compression framework, the analog signal has already been discretized into a signal f [n] of size N.
This discrete signal is decomposed in an orthonormal basis B = {gm}m∈Γ of CN :

f =
∑
m∈Γ

< f, gm > gm. (13)

Coe�cients < f, gm > are approximated by quantized values Q (< f, gm >). If Q is auniform quantizer of
step ∆, then |x − Q (x) | ≤ ∆/2; and if |x| < ∆/2, then Q (x) = 0. The signal f̃ restored from quantized
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coe�cients is

f̃ =
∑
m∈Γ

Q (< f, gm >) gm. (14)

An entropy code records these coe�cients with R bits. The goal is to minimize the signal-distortion rate
d (R, f) =‖ f̃−f ‖2.

The coe�cients not quantized to zero correspond to the set λT = {m ∈ γ : | < f, gm > | ≥ T} with
T = ∆/2. For sparse signals, Chapter 10 shows that the bit budget R is dominated by the number of bits to
code λT in γ, which is nearly proportional to its size |λT |. This means that the �information� about a sparse
representation ismostly geometric. Moreover, the distortion is dominated by the nonlinear approximation er-
ror ‖ f−fΛT

‖2, for fΛT
=

∑
m∈λT

< f, gm > gm. Compression is thus a sparse approximation problem. For
a given distortion d (R, f), minimizing R requires reducing |λT | and thus optimizing the sparsity.

The number of bits to code ΛT can take advantage of any prior information on the geometry. (b) shows
that large wavelet coe�cients are not randomly distributed. They have a tendency to be aggregated toward
larger scales, and at �ne scales they are regrouped along edge curves or in texture regions. Using such prior
geometric models is a source of gain in coders such as JPEG-2000.

Chapter 10 describes the implementation of audio transform codes. Image transform codes in block cosine
bases and wavelet bases are introduced, together with the JPEG and JPEG-2000 compression standards.

5 Denoising

Signal-acquisition devices add noise that can be reduced by estimators using prior information on signal
properties. Signal processing has long remained mostly Bayesian and linear. Nonlinear smoothing algo-
rithms existed in statistics, but these procedures were often ad hoc and complex. Two statisticians, Donoho
andJohnstone (DonohoJ:94), changed the �game� by proving that simple thresholding in sparse representa-
tions can yield nearly optimal nonlinear estimators. This was the beginning of a considerable re�nement of
nonlinear estimation algorithms that is still ongoing.

Let us consider digital measurements that add a random noise W [n] to the original signal f [n]:

X [n] = f [n] +W [n] for 0 ≤ n < N. (15)

The signal f is estimated by transforming the noisy data X with an operator D:

F̃ = DX. (16)

The risk of the estimator F̃ of f is the average error, calculated with respect to the probability distribution
of noise W :

r (D, f) = E{‖ f −DX‖2}. (17)

5.1 Bayes versus Minimax

To optimize the estimation operator D, one must take advantage of prior information available about signal
f . In a Bayes framework, f is considered a realization of a random vector F and the Bayes risk is the
expected risk calculated with respect to the prior probability distribution π of the random signal model F :

r (D,π) = Eπ{r (D,F )}. (18)

Optimizing D among all possible operators yields the minimum Bayes risk:

rn (π) = inf
all D

r (D,π) . (19)
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In the 1940s, Wald brought in a new perspective on statistics with a decision theory partly imported from
the theory of games. This point of view uses deterministic models, where signals are elements of a set Θ,
without specifying their probability distribution in this set. To control the risk for any f ∈ Θ, we compute
the maximum risk:

r (D,Θ) = sup
f∈Θ

r (D, f) . (20)

The minimax risk is the lower bound computed over all operators D:

rn (Θ) = inf
all D

r (D,Θ) . (21)

In practice, the goal is to �nd an operator D that is simple to implement and yields a risk close to the
minimax lower bound.
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Figure 1

5.2 Thresholding Estimators

It is tempting to restrict calculations to linear operators D because of their simplicity. Optimal linear
Wiener estimators are introduced in Chapter 11. Figure (a) is an image contaminated by Gaussian white
noise. Figure (b) shows an optimized linear �ltering estimation F̃ = X [U+2606]h [n], which is therefore
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diagonal in a Fourier basis B. This convolution operator averages the noise but also blurs the image and
keeps low-frequency noise by retaining the image's low frequencies.

If f has a sparse representation in a dictionary, then projecting X on the vectors of this sparse support can
considerably improve linear estimators. The di�culty is identifying the sparse support of f from the noisy
data X. Donoho and Johnstone (DonohoJ:94) proved that, in an orthonormal basis, a simple thresholding
of noisy coe�cients does the trick. Noisy signal coe�cients in an orthonormal basisB = {gm}m∈Γ are

< X, gm >=< f, gm > + < W, gm > for m ∈ γ. (22)

Thresholding these noisy coe�cients yields an orthogonal projection estimator

F̃ = XΛ̃T
=

∑
m∈Λ̃T

< X, gm > gm with Λ̃T = {m ∈ γ : | < X, gm > | ≥ T}. (23)

The set Λ̃T is an estimate of an approximation support of f . It is hopefully close to the optimal approxi-
mation support λT = {m ∈ γ : | < f, gm > | ≥ T}.

Figure 1(b) shows the estimated approximation set λ̃T of noisy-wavelet coe�cients, | < X,ψj,n| ≥ T , that
can be compared to the optimal approximation support ΛT shown in (b). The estimation in Figure 1(d)
from wavelet coe�cients in λ̃T has considerably reduced the noise in regular regions while keeping the
sharpness of edges by preserving large-wavelet coe�cients. This estimation is improved with a translation-
invariant procedure that averages this estimator over several translated wavelet bases. Thresholding wavelet
coe�cients implements an adaptive smoothing, which averages the data X with a kernel that depends on
the estimated regularity of the original signal f .

Donoho and Johnstone proved that for Gaussian white noise of variance σ2, choosing T = σ
√

2logeN
yields a risk E{‖ f − F̃‖2} of the order of ‖ f − fΛT

‖2, up to a logeN factor. This spectacular result shows
that the estimated support λ̃T does nearly as well as the optimal unknown support λT. The resulting risk
is small if the representation is sparse and precise.

The set λ̃T in Figure 1(b) �looks� di�erent from the λT in (b) because it has more isolated points. This
indicates that some prior information on the geometry of λT could be used to improve the estimation.
For audio noise-reduction, thresholding estimators are applied in sparse representations provided by time-
frequency bases. Similar isolated time-frequency coe�cients produce a highly annoying �musical noise.�
Musical noise is removed with a block thresholding that regularizes the geometry of the estimated support
λ̃T and avoids leaving isolated points. Block thresholding also improves wavelet estimators.

If W is a Gaussian noise and signals in Θ have a sparse representation in B, then Chapter 11 proves that
thresholding estimators can produce a nearly minimax risk. In particular, wavelet thresholding estimators
have a nearly minimax risk for large classes of piecewise smooth signals, including bounded variation images.
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