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Time-Frequency Dictionaries

Summary
This collection comprises Chapter 1 of the book
    A Wavelet Tour of Signal Processing, The Sparse Way
    (third edition, 2009) by Stéphane Mallat.  The book's
    website at Academic Press is
http://www.elsevier.com/wps/find/bookdescription.cws_home/714561/description#description
    The book's complementary materials are available at
http://wavelet-tour.com




 Motivated by quantum mechanics, in 1946 the physicist
Gabor (Gabor:46) 
proposed decomposing signals over dictionaries of
elementary waveforms which he called
time-frequency atoms 
that have a minimal spread in a 
time-frequency plane.
By showing that such decompositions
are closely related to our perception of sounds, and that they exhibit
important structures in speech and music recordings,
Gabor demonstrated the importance
of localized time-frequency signal processing.
Beyond sounds, large classes of signals have sparse decompositions as sums
of time-frequency atoms selected from appropriate dictionaries.
The key issue is to understand
how to construct dictionaries with time-frequency atoms
adapted to signal properties.
1. Heisenberg Uncertainty



 Figure 1. 
 [image: Heisenberg Uncertainty]
Heisenberg box representing an atom φγ
            .



 A time-frequency dictionary
 is composed of waveforms of unit norm  ∥ φ
            
               γ
             ∥  = 1,
which have a narrow localization in time and frequency.
The time localization u of φγ
          and its spread around u, are defined
by
(1)

 Similarly, the frequency localization and spread of 
are defined by
(2)

 The Fourier Parseval formula
(3)

 
shows that  depends mostly on the values
 and , where 
            φ
            
               γ
            (t) and 
are nonnegligible ,
and hence for (t,ω) in a rectangle centered at (u,ξ), of size
. This rectangle is illustrated by
Figure 1 in this time-frequency plane (t,ω).
It can be interpreted
as a “quantum of information” over an elementary resolution cell.
The uncertainty principle theorem  proves
(see Chapter 2) that
this rectangle has a minimum surface that limits the
joint time-frequency resolution:
(4)

 Constructing a dictionary of time-frequency atoms can thus be thought of as
covering the time-frequency plane with resolution cells having a time
width 
            σ
            
               t,γ
            
          anda frequency width 
            σ
            
               ω,γ
            
         
which may vary but with a surface larger than one-half.
Windowed Fourier and wavelet transforms are two important examples.

2. Windowed Fourier Transform



 A windowed Fourier dictionary is constructed by translating
in time and frequency a time window 
            g(t), of unit norm  ∥ g ∥  = 1,
centered at 
            t = 0:
(5)

 The atom 
            g
            
               u,ξ
            
          is translated by u in time and by ξ in frequency.
The time-and-frequency spread of 
            g
            
               u,ξ
            
          is independent of u and ξ.
This means that each atom 
            g
            
               u,ξ
            
          corresponds to
a Heisenberg rectangle 
that has a size 
independent of its position (u,ξ), as shown
by Figure 2.
 Figure 2. 
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Time-frequency boxes (“Heisenberg rectangles”) representing the energy
spread of two windowed Fourier atoms.



 The windowed Fourier transform 
projects  on each dictionary atom 
            g
            
               u,ξ
            
         :
(6)

 
It can be interpreted as a Fourier transform of  at the frequency ξ,
localized by the window 
            g(t – u) in the neighborhood of u.
This windowed Fourier transform is highly redundant and represents one-dimensional signals
by a time-frequency image in (u,ξ).
It is thus necessary to understand how to select many fewer
time-frequency coefficients that represent the signal efficiently.
 When listening to music, we perceive sounds that have a
frequency that varies in time. Chapter 4 shows
that a spectral line of  
creates high-amplitude windowed Fourier coefficients 
            S
            f(u,ξ)
at frequencies 
            ξ(u) that depend on time u.
These spectral components are detected and characterized by
ridge points, which are local maxima in this time-frequency plane.
Ridge points define a time-frequency approximation support
λ of  with a geometry that depends on the time-frequency
evolution of the signal spectral components. Modifying the
sound duration or audio transpositions are implemented by modifying
the geometry of the ridge support in time frequency.
 A windowed Fourier transform decomposes signals over waveforms that
have the same time and frequency resolution. It is thus effective
as long as the signal does not include structures having different
time-frequency resolutions, some being very localized
in time and others very localized in frequency.  Wavelets address this
issue by changing the time and frequency resolution.

3. Continuous Wavelet Transform



 In reflection seismology, Morlet knew that the waveforms
sent underground have a duration that is too long
at high frequencies to separate the returns of fine, closely spaced
geophysical layers. Such waveforms are called wavelets in
geophysics. Instead of emitting pulses of equal duration,
he thought of sending shorter waveforms at high frequencies.
These waveforms were obtained by scaling the mother
wavelet, hence the name of this transform. Although Grossmann was working in
theoretical physics, he recognized in Morlet's approach some ideas
that were close to his own
work on coherent quantum states.
 Nearly forty years after
Gabor, Morlet and Grossmann reactivated a fundamental
collaboration between
theoretical physics and signal processing, which
led to the formalization of the
continuous wavelet transform 
(GrossmannM:84). These ideas were not totally new
to mathematicians working in harmonic analysis, or to computer vision
researchers studying multiscale image processing. It was thus
only the beginning of a rapid catalysis that brought together
scientists with very different backgrounds.
 A wavelet dictionary is constructed from a mother
wavelet ψ of zero average
(7)

 which is dilated with a scale parameter s, and translated
by u:
(8)

 
The  continuous wavelet transform
of  at any scale s and position
u is the projection of  on the corresponding wavelet atom:
(9)

 
It represents one-dimensional signals
by highly redundant time-scale images in (u,s).
Varying Time-Frequency Resolution



 As opposed to windowed Fourier atoms, wavelets have a time-frequency
resolution that changes.
The wavelet 
               ψ
               
                  u,s
               
             has a time support
centered at u and proportional to s.
Let us choose a wavelet ψ whose Fourier transform
 is nonzero
in a positive frequency interval centered at η. 
The Fourier transform  is
dilated by 1 / s
             and thus is localized in a
positive frequency
interval centered at 
               ξ = η / s
            ;
its size is scaled by 1 / s
            .
In the time-frequency plane, the Heisenberg box
of a wavelet atom 
               ψ
               
                  u,s
               
             is therefore
a rectangle centered at (u,η / s), with
time and frequency widths, respectively,
proportional to s and 1 / s
            . 
When s varies, the time and frequency width
of this time-frequency resolution cell changes, but
its area remains constant, as illustrated by
Figure 3.
 Large-amplitude wavelet coefficients can detect and measure short
high-frequency variations because they have a narrow time
localization at high frequencies. At low frequencies their time
resolution is lower, but they have a better frequency resolution.
This modification of time and frequency resolution is adapted to
represent sounds with sharp attacks, or radar signals having a
frequency that may vary quickly at high frequencies.

Multiscale Zooming



 A wavelet dictionary is also adapted to analyze
the scaling evolution of transients
with zooming procedures across scales.
Suppose now that ψ is real.
Since it has a zero average, a wavelet coefficient 
               W
               f(u,s)
measures the variation
of  in a neighborhood of u that has a size
proportional to s.
Sharp signal transitions create large-amplitude wavelet coefficients.
 Figure 3. 
 [image: Multiscale Zooming]
Heisenberg time-frequency boxes of two
wavelets, 
                  ψ
                  
                     u,s
                  
                and 
                  ψ
                  
                     u
                     0,s
                     0
                  
               .
When the
scale s decreases, the time support is reduced but
the frequency spread increases and covers an interval
that is shifted toward high frequencies.



 Signal singularities have specific scaling invariance characterized by
Lipschitz exponents. Chapter 6 relates the pointwise
regularity of  to the asymptotic decay of the wavelet
transform amplitude |W
               f(u,s)| when s goes to zero.
Singularities are detected by following
the local maxima of the wavelet transform acrossscales.
 In images, wavelet local maxima indicate
the position of edges, which are
sharp variations of image intensity.
It defines scale–space approximation support of  from which precise
image approximations are reconstructed.
At different scales, the geometry of this
local maxima support provides contours
of image structures of varying sizes.
This multiscale edge detection is particularly effective for
pattern recognition in computer vision (Canny:86).
 The zooming capability of the wavelet transform
not only locates isolated singular events, but can
also characterize more complex multifractal
 signals
having nonisolated singularities.
Mandelbrot (Mandelbrot:82) was the first to recognize
the existence of multifractals in most corners of nature.
Scaling one part of a multifractal
produces a signal that is statistically similar to the
whole. This self-similarity 
appears in the continuous
wavelet transform, which modifies the analyzing scale.
From global measurements of the wavelet transform decay,
Chapter 6 measures
the singularity distribution of multifractals.
This is particularly important in analyzing their
properties and testing multifractal models
in physics or in financial time series.


4. Time-Frequency Orthonormal Bases



 Orthonormal bases of time-frequency atoms
remove all redundancy and define stable
representations. A wavelet orthonormal basis is an example of the time-frequency
basis obtained by scaling a wavelet
ψ with dyadic scales  and translating it by ,
which is written 
            ψ
            
               j,n
            
         . In the time-frequency plane,
the Heisenberg resolution box of 
            ψ
            
               j,n
            
          is a dilation by 
and translation by  of the Heisenberg box of ψ.
A wavelet orthonormal is thus a subdictionary of the
continuous wavelet transform dictionary, which
yields a perfect
tiling of the time-frequency plane illustrated in Figure 4.
 Figure 4. 
 [image: Time-Frequency Orthonormal Bases]
The time-frequency boxes of a wavelet
basis define a tiling of the time-frequency plane.



 One can construct many other orthonormal bases of time-frequency atoms,
corresponding to different tilings of the time-frequency plane.
Wavelet packet and local cosine bases are two important examples
constructed in Chapter 8, with
time-frequency atoms that split
the frequency and the time axis, respectively, in intervals of varying sizes.
Wavelet Packet Bases



 Wavelet bases divide the frequency axis into intervals of 1 octave bandwidth.
Coifman, Meyer, and Wickerhauser (CoifmanMW:92) have
generalized this construction with bases that split the
frequency axis in intervals of bandwidth that may be adjusted.
Each frequency interval 
is covered by the Heisenberg time-frequency boxes
of wavelet packet functions translated in time, in order to cover the whole
plane, as shown by Figure 5.
 As for wavelets, wavelet-packet coefficients are obtained with a
filter bank of conjugate mirror filters that split the frequency axis
in several frequency intervals.
Different frequency segmentations correspond to different wavelet
packet bases. For images, a filter bank
divides the image frequency support in squares of dyadic sizes that
can be adjusted.
 Figure 5. 
 [image: Wavelet Packet Bases]
A wavelet packet basis divides the frequency axis in separate
intervals of varying sizes. A tiling is obtained
by translating in time the wavelet packets covering
each frequency interval.




Local Cosine Bases



 Local cosine orthonormal bases are
constructed by dividing the time
axis instead of the frequency axis.
The time axis is segmented in successive intervals
.
The local cosine bases of Malvar (Malvar:88) are obtained
by designing
smooth windows 
               g
               
                  p
               (t) that cover each interval
, and by multiplying them
by cosine functions cos(ξ
               t + φ) of different frequencies.
This is yet another idea that has been
independently studied in physics,
signal processing, and mathematics.
Malvar's original construction was for discrete signals.
At the same time, the physicist Wilson (Wilson:87)
was designing a  local cosine basis,
with smooth windows of infinite support, to analyze the
properties of quantum coherent states.
Malvar bases were also rediscovered and generalized
by the harmonic analysts Coifman and Meyer (CoifmanM:91).
These different views of the same bases brought to
light mathematical and algorithmic properties
that opened new applications.
 A multiplication by cos(ξ
               t + φ) translates the
Fourier transform  of 
               g
               
                  p
               (t) by  ± ξ
            .
Over positive frequencies,
the time-frequency box of the modulated
window 
               g
               
                  p
               (t)cos(ξ
               t + φ)
is therefore equal to
the time-frequency box of gp
             translated by
ξ along frequencies.
??? shows
the time-frequency tiling corresponding to such a
local cosine basis.
For images, a two-dimensional cosine basis is constructed by dividing the
image support in squares of varying sizes.
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