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Distribution and Density Functions

Summary
In the unit on Random Variables and Probability, we introduce real random variables as mappings from the basic space to the real line. The mapping induces a transfer of the probability mass on the basic space to subsets of the real line in such a way that the probability that X takes a value in a set M is exactly the mass assigned to that set by the transfer. To perform probability calculations, we need to describe analytically the distribution on the line. For simple random variables, we have at each possible value of X a point mass equal to the probability X takes that value. For more general cases, we need a more useful description: the distribution function which at each t has the value of the probability mass at or to the left of t.
If the probability mass in the induced distribution is spread smoothly along the real line, with no point mass concentrations, there is a probability density function such that the probability mass in any interval is the area under the curve over that interval.




1.  Introduction



 In the unit on Random Variables and Probability we introduce real random variables
as mappings from the basic space Ω
to the real line. The mapping induces a transfer of the probability mass on the basic space
to subsets of the real line in such a way that the probability that X takes a value in a
set M is exactly the mass assigned to that set by the transfer. To perform probability
calculations, we need to describe analytically the distribution on the line. For
simple random variables this is easy. We have at each possible value of X a point
mass equal to the probability X takes that value. For more general cases, we need a
more useful description than that provided by the induced probability measure PX
         .

2. The distribution function



 In the theoretical discussion on Random Variables and Probability, we note that
the probability distribution induced by
a random variable X is determined uniquely by a consistent assignment of mass to semi-infinite
intervals of the form ( – ∞,t] for each real t.  This suggests that a natural description
is provided by the following.
 
         Definition
      
 The distribution function 
         FX
          for random variable X is given by
(1)

 In terms of the mass distribution on the line, this is the probability mass at or to
the left of the point 
         t. As a consequence, FX
          has the following properties:
 	 
            (F1) : 
            FX
             must be a nondecreasing function, for if 
               t > s
             there must be at least
as much probability mass at or to the left of t as there is for s.

	 
            (F2) : 
            FX
             is continuous from the right, with a jump in the amount p0
             at
t0
             iff
.  If the point t approaches t0
             from the left, the interval
does not include the probability mass at t0
             until t reaches that value, at which point the
amount at or to the left of t increases ("jumps") by amount p0
            ; on the other hand, if t approaches t0
            
from the right, the interval includes the mass p0
             all the way to and including t0
            , but drops
immediately as t moves to the left of t0
            .

	 
            (F3) : Except in very unusual cases involving random variables which may take “infinite”
values, the probability mass included in  must increase to one as
t moves to the right; as t moves to the left, the probability mass included must decrease
to zero, so that
(2)


         

 A distribution function determines the probability mass in each semiinfinite interval
( – ∞,t].  According to the discussion referred to above, this determines uniquely
the induced distribution.
 The distribution function FX
          for a simple random variable is easily visualized. The
distribution consists of point mass pi
          at each point ti
          in the range. To the left of
the smallest value in the range, 
            F
            
               X
            (t) = 0; as t increases to the smallest value t1
         ,

            F
            
               X
            (t) remains constant at zero until it jumps by the amount p1..  
            F
            
               X
            (t) remains constant
at p1
          until t increases to t2
         , where it jumps by an amount p2
          to the value 
            p
            1 + p
            2
         .  This continues until the value of 
            F
            
               X
            (t)reaches 1 at the largest value tn
         . The
graph of FX
          is thus a step function, continuous from the right, with a jump in the amount
pi
          at the corresponding point ti
          in the range. A similar situation exists for a discrete-valued
random variable which may take on an infinity of values (e.g., the geometric distribution
or the Poisson distribution considered below). In this case, there is always some probability
at points to the right of any ti
         , but this must become vanishingly small as t increases,
since the total probability mass is one.
 The procedure ddbn may be used to plot the distributon function for a simple
random variable from a matrix X of values and a corresponding matrix 
            PX
          of
probabilities.
 Example 1. Graph of FX
             for a simple random variable
 >> c = [10 18 10 3];             % Distribution for X in Example 6.5.1
>> pm = minprob(0.1*[6 3 5]);
>> canonic
 Enter row vector of coefficients  c
 Enter row vector of minterm probabilities  pm
Use row matrices X and PX for calculations
Call for XDBN to view the distribution
>> ddbn                          % Circles show values at jumps
Enter row matrix of VALUES  X
Enter row matrix of PROBABILITIES  PX
%  Printing details   See Figure 1
         



 Figure 1. 
 [image: Graph of FX for a simple random variable]
Distribution function for Example 1




3. Description of some common discrete distributions



 We make repeated use of a number of common distributions which are used in many practical situations.
This collection includes several distributions which are studied in the chapter "Random Variables and Probabilities".
 	 
               Indicator function.  
                  X = I
                  
                     E
                  
                
                
                  P(X = 1) = P(E) = p
               
               
                  P(X = 0) = q = 1 – p
               .
The distribution function has a jump in the amount q at 
                  t = 0 and an additional jump
of p to the value 1 at 
                  t = 1.


	 
               Simple random variable 
                 (canonical form)

(3)


The distribution function is a step function, continuous from the right, with jump of pi
               
at 
                  t = t
                  
                     i
                  
                (See Figure 1 for Example 1)


	 
               Binomial 
               (n,p).  This random variable appears as the number of successes
in a sequence of n Bernoulli trials with probability p of success. In its simplest form

(4)


               
(5)


As pointed out in the study of Bernoulli sequences in the unit on Composite Trials,
two m-functions
ibinom andcbinom are available for computing the individual and
cumulative binomial probabilities.


	 
               Geometric 
               (p)  There are two related distributions, both arising in the
study of continuing Bernoulli sequences. The first counts the number of failures before
the first success. This is sometimes called the “waiting time.” The event {X = k}
consists of a sequence of k failures, then a success. Thus

(6)


The second designates the component trial on which the first success occurs. The event
{Y = k} consists of 
                  k – 1 failures, then a success on the kth component trial. We have

(7)


We say X has the geometric distribution with parameter (p), which we often designate by

                  X ∼  geometric (p).  Now 
                  Y = X + 1 or 
                  Y – 1 = X
               . For this reason, it is
customary to refer to the distribution for the number of the trial for the first success
by saying 
                  Y – 1 ∼  geometric (p). The probability of k or more failures before
the first success is 
                  P(X ≥ k) = q
                  
                     k
                  
               .  Also

(8)


This suggests that a Bernoulli sequence essentially "starts over" on each trial. If it has
failed n times, the probability of failing an additional k or more times before the next
success is the same as the initial probability of failing k or more times before the first success.



 Example 2. The geometric distribution
 A statistician is taking a random sample from a population in which two percent of the
members own a BMW automobile. She takes a sample of size 100. What is the probability
of finding no BMW owners in the sample?
 
SOLUTION
The sampling process may be viewed as a sequence of Bernoulli trials with probability

                           p = 0.02 of success. The probability of
100 or more failures before the first success is 0.98100 = 0.1326 or about 1/7.5.




            

	 
               Negative binomial 
               (m,p).  X is the number of failures before the mth
success. It is generally more convenient to work with 
                  Y = X + m
               , the number of the
trial on which the mth success occurs. An examination of the possible patterns and
elementary combinatorics show that

(9)


There are 
                  m – 1 successes in the first 
                  k – 1 trials, then a success. Each combination
has probability 
                  p
                  
                     m
                  
                  q
                  
                     k – m
                  
               .  We have an m-function nbinom to calculate these
probabilities.



 Example 3. A game of chance
 A player throws a single six-sided die repeatedly. He scores if he throws a 1 or a 6. What
is the probability he scores five times in ten or fewer throws?
 >> p = sum(nbinom(5,1/3,5:10))
p  =  0.2131

 An alternate solution is possible with the use of the binomial distribution. The mth
success comes not later than the kth trial iff the number of successes in k trials is
greater than or equal to m.
 >> P = cbinom(10,1/3,5)
P  =  0.2131





            

	 
               Poisson 
               (μ).  This distribution is assumed in a wide variety
of applications.
It appears as a counting variable for items arriving with exponential interarrival times (see
the relationship to the gamma distribution below). For large n and small p (which may not
be a value found in a table), the binomial distribution is approximately Poisson (n
                  p).
Use of the generating function (see Transform Methods) shows the sum of
independent Poisson random variables
is Poisson. The Poisson distribution is integer valued, with

(10)


Although Poisson probabilities are usually easier to calculate with scientific calculators
than binomial probabilities, the use of tables is often quite helpful. As in the
case of the binomial distribution, we have two m-functions for calculating Poisson
probabilities. These have advantages of speed and parameter range similar to those for ibinom
and cbinom.
 
	 
                     : 
                     
                        P(X = k) is calculated by P =  ipoisson(mu,k), where k is a row or
column vector of integers and the result P is a row matrix of the probabilities.

	 
                     : 
                     
                        P(X ≥ k) is calculated by P = cpoisson(mu,k), where k is a row
or column vector of integers and the result P is a row matrix of the probabilities.




               
 Example 4. Poisson counting random variable
 The number of messages arriving in a one minute period at a communications network junction
is a random variable 
                        N ∼  Poisson (130). What is the probability the number of
arrivals is greater than equal to 110, 120, 130, 140, 150, 160 ?
 >> p = cpoisson(130,110:10:160)
p  =  0.9666  0.8209  0.5117  0.2011  0.0461  0.0060

 The descriptions of these distributions, along with a number of other facts, are
summarized in the table DATA ON SOME COMMON DISTRIBUTIONS in Appendix C.




            




4. The density function



 If the probability mass in the induced distribution is spread smoothly along the real line,
with no point mass concentrations, there is a probability density function 
            f
            
               X
            
          which
satisfies
(11)

 At each t, 
            f
            
               X
            (t) is the mass per unit length in the probability distribution. The density function has
three characteristic properties:
(12)

 A random variable (or distribution) which has a density is called absolutely continuous.  This term comes from measure theory. We often simply abbreviate as continuous
distribution.
 Remarks
	 There is a technical mathematical description of the condition “spread
smoothly with no point mass concentrations.” And strictly speaking the integrals are
Lebesgue integrals rather than the ordinary Riemann kind. But for practical cases, the
two agree, so that we are free to use ordinary integration techniques.


	 By the fundamental theorem of calculus

(13)


            

	 Any integrable, nonnegative function 
                  f
                with ∫f = 1 determines a distribution
function 
                  F
               , which in turn determines a probability distribution. If ∫f ≠ 1,
multiplication by the appropriate positive constant gives a suitable 
                  f
               . An
argument based on the Quantile Function shows the existence of a random
variable with that distribution.


	 In the literature on probability, it is customary to omit the indication
of the region of integration when integrating over the whole line. Thus

(14)


The first expression is not an indefinite integral. In many situations, 
                  f
                  
                     X
                  
                will
be zero outside an interval. Thus, the integrand effectively determines the region of
integration.




 Figure 2. 
 [image: ]
The Weibull density for 
               α = 2,λ = 0.25,1,4.



 Figure 3. 
 [image: ]
The Weibull density for 
               α = 10,λ = 0.001,1,1000.




5. Some common absolutely continuous distributions



 	 
               Uniform 
               . 

 Mass is spread uniformly on the interval . It
is immaterial whether or not the end points are included, since probability associated with
each individual point is zero. The probability of any subinterval is proportional to the
length of the subinterval. The probability of being in any two subintervals of the same
length is the same. This distribution is used to model situations in which it is known that
X takes on values in  but is equally likely to be in any subinterval of a given
length. The density must be constant over the interval (zero outside), and the distribution
function increases linearly with t in the interval. Thus,

(15)


The graph of FX
                rises linearly, with slope 1 / (b – a) from zero at 
                  t = a
                to
one at 
                  t = b
               .


	 
               Symmetric triangular 
               .    

This distribution is used frequently in instructional numerical examples because probabilities
can be obtained geometrically. It can be shifted, with a shift of the graph, to different
sets of values. It appears naturally (in shifted form) as the distribution for the sum or
difference of two independent random variables uniformly distributed on intervals of the same
length. This fact is established with the use of the moment generating function
(see Transform Methods).
More generally, the density may have a triangular graph which is not symmetric.



 Example 5. Use of a triangular distribution
 Suppose 
                        X ∼  symmetric triangular . Determine 
                        P(120 < X ≤ 250).
 
                     Remark.  Note that in the continuous case, it is immaterial whether the end
point of the intervals are included or not.
 
SOLUTION
To get the area under the triangle between 120 and 250, we take one minus the area of
the right triangles between 100 and 120 and between 250 and 300. Using the fact that
areas of similar triangles are proportional to the square of any side, we have
(16)





            

	 
               Exponential 
               ( λ) 
                 (zero elsewhere).

Integration shows   (zero elsewhere).
We note that . This leads to
an extremely important property of the exponential distribution. Since 
implies 
                  X > t
               , we have

(17)
                     P(X > t + h|X > t) = P(X > t + h) / P(X > t) = e
                      – λ(t + h) / e
                      – λ
                        t
                      = e
                      – λ
                        h
                      = P(X > h)

Because of this property, the exponential distribution is often used in reliability problems.
Suppose X represents the time to failure (i.e., the life duration) of a device put into service
at 
                  t = 0. If the distribution is exponential, this property says that if the device
survives to time t (i.e., 
                  X > t
               ) then the (conditional) probability it will survive h more
units of time is the same as the original probability of surviving for h units of time.
Many devices have the property that they do not wear out. Failure is due
to some stress of external origin. Many solid state electronic devices behave essentially
in this way, once initial “burn in” tests have removed defective units.
Use of Cauchy's equation (Appendix B) shows that the exponential distribution is the only
continuous distribution with this property.


	 
               Gamma distribution  
                   
                 (zero elsewhere)

We have an m-function gammadbn to determine values of the distribution function
for 
                  X ∼  gamma . Use of moment generating functions shows
that for 
                  α = n
               , a random variable 
                  X ∼  gamma  has the same distribution
as the sum of n independent random variables, each exponential (λ). A relation to
the Poisson distribution is described in Sec 7.5.



 Example 6. An arrival problem
 On a Saturday night, the times (in hours) between arrivals in a hospital emergency unit
may be represented by a random quantity which is exponential (λ = 3). As we show in the chapter Mathematical Expectation,
this means that the average interarrival time is 1/3 hour or 20 minutes. What is the
probability of ten or more arrivals in four hours? In six hours?
 
SOLUTION
The time for ten arrivals is the sum of ten interarrival times. If we suppose these are
independent, as is usually the case, then the time for ten arrivals is
gamma .
 >> p = gammadbn(10,3,[4 6])
p  =  0.7576    0.9846





            

	 Normal, or Gaussian 


We generally indicate that a random variable X has the normal or gaussian distribution by
writing , putting in the actual values for the parameters.
The gaussian distribution plays a central role in many aspects of applied probability theory, particularly
in the area of statistics. Much of its importance comes from the central limit theorem
(CLT), which is a term applied to a number of theorems in analysis. Essentially, the
CLT shows that the
distribution for the sum of a sufficiently large number of independent random variables has
approximately the gaussian distribution. Thus, the gaussian distribution appears naturally
in such topics as
theory of errors or theory of noise, where the quantity observed is an additive combination
of a large number of essentially independent quantities.

Examination of the expression shows that the graph for 
               f
               
                  X
               (t) is symmetric about its
maximum at 
               t = μ
            . The greater the parameter σ2
            , the smaller the maximum
value and the more slowly the curve decreases with distance from μ. Thus parameter μ
locates the center of the mass distribution and σ2
             is a measure of the spread of mass
about μ. The parameter μ is called the mean value and σ2
             is
the variance. The parameter σ, the positive square root of the variance, is called the
standard deviation. While we have an explicit formula for the density function, it is
known that the distribution function, as the integral of the density function, cannot be expressed
in terms of elementary functions. 

The usual procedure is to use tables obtained by
numerical integration.




Since there are two parameters, this raises the question whether a separate table is needed
for each pair of parameters. It is a remarkable fact that this is not the case. 

We need only
have a table of the distribution function for . This is refered to as
the standardized normal distribution. We use φ and Φ for the standardized
normal density and distribution functions, respectively.

Standardized normal  so that the distribution function is .   The graph of the density function is the well known bell shaped curve, symmetrical about
the origin (see Figure 4). The symmetry about the origin contributes to its usefulness.



(18)




Note that the area to the left of 
               t =  – 1.5 is the same as the area to the right of 
               t = 1.5, so that

               Φ( – 2) = 1 – Φ(2). The same is true for any t, so that we have


(19)





This indicates that we need only a table of values of 
               Φ(t) for 
               t > 0 to
be able to determine 
               Φ(t) for any t. We may use the symmetry for any case. Note
that 

               Φ(0) = 1 / 2,
 Figure 4. 
 [image: ]
The standardized normal distribution.



 Example 7. Standardized normal calculations
 Suppose 
                     X ∼ N(0,1). Determine 
                     P( – 1 ≤ X ≤ 2) and 
                     P(|X| > 1).
 
SOLUTION
1.  
                        P( – 1 ≤ X ≤ 2) = Φ(2) – Φ( – 1) = Φ(2) – [1 – Φ(1)] = Φ(2) + Φ(1) – 1
                  
 2.  
                     P(|X| > 1) = P(X > 1) + P(X <  – 1) = 1 – Φ(1) + Φ( – 1) = 2[1 – Φ(1)]
               
 From a table of standardized normal distribution function (see Appendix D), we find
 
                  
                     Φ(2) = 0.9772 and 
                     Φ(1) = 0.8413 which gives 
                     P( – 1 ≤ X ≤ 2) = 0.8185 and 
                     P(|X| > 1) = 0.3174
               



General gaussian distribution

      For , the density maintains
the bell shape, but is shifted with different spread and height. Figure 5 shows the
distribution function and density function for .  The density is centered
about 
               t = 2.  It has height 1.2616 as compared with 0.3989 for the standardized
normal density. Inspection shows that the graph is narrower than that for the
standardized normal. The distribution function reaches 0.5 at the mean value 2.
       Figure 5. 
 [image: SOLUTION]
The normal density and distribution functions for 
                     X ∼ N(2,0.1).



 A change of variables in the integral shows that the
table for standardized normal distribution function can be used for any case.
(20)

 Make the change of variable and corresponding formal changes
(21)

 to get
(22)

 Example 8. General gaussian calculation
 Suppose 
                     X ∼ N(3,16) (i.e., 
                     μ = 3 and 
                     σ
                     2 = 16). Determine

                     P( – 1 ≤ X ≤ 11) and 
                     P(|X – 3| > 4).
 SOLUTION
 	  
                        
                     

	  
                        
                     



 In each case the problem reduces to that in Example 7
               





      We have m-functions gaussian and gaussdensity to calculate
values of the distribution and density function for any reasonable value of the parameters.

The following are solutions of Example 7 and Example 8, using the m-function gaussian.

 Example 9. 
                  Example 7 and Example 8 (continued)
 >> P1 = gaussian(0,1,2) - gaussian(0,1,-1)
P1 =  0.8186
>> P2 = 2*(1 - gaussian(0,1,1))
P2 =  0.3173
>> P1 = gaussian(3,16,11) - gaussian(3,16,-1)
P2 =  0.8186
>> P2 = gaussian(3,16,-1)) + 1 - (gaussian(3,16,7)
P2 =  0.3173

 The differences in these results and those above (which used tables) are due to the roundoff to four places in the tables.




	 
               Beta
               .   

Analysis is based on the integrals

(23)


               Figure 6 and Figure 7 show graphs of the densities for various values of . The
usefulness comes in approximating densities on the unit interval. By using scaling and
shifting, these can be extended to other intervals. The special case 
                  r = s = 1 gives
the uniform distribution on the unit interval. The Beta distribution is quite useful
in developing the Bayesian statistics for the problem of sampling to determine a
population proportion.
If  are integers, the density function is a polynomial. For the general case
we have two m-functions, beta and betadbn to perform the calculatons.

 Figure 6. 
 [image: ]
The Beta(r,s) density for .




               
 Figure 7. 
 [image: ]
The Beta(r,s) density for .




            

	 
               Weibull
               

The parameter ν   is a shift parameter. Usually we assume 
                  ν = 0. Examination
shows that for 
                  α = 1 the distribution is exponential (λ). The
parameter α provides a distortion of the time scale for the exponential distribution.
Figure 6 and Figure 7 show graphs of the Weibull density for some representative values of
α and λ (
                  ν = 0). The distribution is used in reliability theory. We
do not make much use of it. However, we have m-functions weibull (density) and
weibulld (distribution function) for shift parameter 
                  ν = 0 only. The shift can
be obtained by subtracting a constant from the t values.
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