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Abstract

Consider a pair {X,Y} with a joint distribution. A value X(ω) is observed. It is desired to estimate
the corresponding value Y(ω). The best that can be hoped for is some estimate based on an average
of the errors, or on the average of some function of the errors. The most common measure of error is
the mean (expectation) of the square of the error. This has two important properties: it treats positive
and negative errors alike, and it weights large errors more heavily than smaller ones. In general, we
seek a rule (function) r such that the estimate is r(X(ω)). That is, we seek a function r such that the
expectation of the square of Y - r(X) is a minimum. The problem of determining such a function is
known as the regression problem. LINEAR REGRESSION: we seek the best straight line function (the
regression line of Y on X) of the form u = r(t) + b, such that the mean square of Y - r(X) is a minimum.
Matlab approximation procedures are compared with analytic results. More general linear regression is
considered

1 Linear Regression

Suppose that a pair {X, Y } of random variables has a joint distribution. A value X (ω) is observed. It is
desired to estimate the corresponding value Y (ω). Obviously there is no rule for determining Y (ω) unless
Y is a function of X. The best that can be hoped for is some estimate based on an average of the errors, or
on the average of some function of the errors.

Suppose X (ω) is observed, and by some rule an estimate
^
Y (ω) is returned. The error of the estimate is

Y (ω)−
^
Y (ω). The most common measure of error is the mean of the square of the error

E

[(
Y−

^
Y

)2
]

(1)

The choice of the mean square has two important properties: it treats positive and negative errors alike,
and it weights large errors more heavily than smaller ones. In general, we seek a rule (function) r such that

the estimate
^
Y (ω) is r (X (ω)). That is, we seek a function r such that

E
[
(Y − r (X))2

]
is a minimum. (2)

The problem of determining such a function is known as the regression problem. In the unit on Regression1,
we show that this problem is solved by the conditional expectation of Y, given X. At this point, we seek an
important partial solution.

∗Version 1.6: Sep 18, 2009 1:15 pm -0500
†http://creativecommons.org/licenses/by/3.0/
1"Conditional Expectation, Regression": Section The regression problem <http://cnx.org/content/m23634/latest/#cid6>

http://cnx.org/content/m23468/1.6/



Connexions module: m23468 2

The regression line of Y on X

We seek the best straight line function for minimizing the mean squared error. That is, we seek a function
r of the form u = r (t) = at+ b. The problem is to determine the coe�cients a, b such that

E
[
(Y − aX − b)2

]
is a minimum (3)

We write the error in a special form, then square and take the expectation.

Error = Y − aX − b = (Y − µY )− a (X − µX) + µY − aµX − b = (Y − µY )− a (X − µX)− β (4)

Error squared = (Y − µY )2 + a2(X − µX)2 + β2 − 2β (Y − µY ) + 2aβ (X − µX)−
2a (Y − µY ) (X − µX)

(5)

E
[
(Y − aX − b)2

]
= σ2

Y + a2σ2
X + β2 − 2aCov [X,Y ] (6)

Standard procedures for determining a minimum (with respect to a) show that this occurs for

a =
Cov [X,Y ]

Var [X]
b = µY − aµX (7)

Thus the optimum line, called the regression line of Y on X, is

u =
Cov [X,Y ]

Var [X]
(t− µX) + µY = ρ

σY

σX
(t− µX) + µY = α (t) (8)

The second form is commonly used to de�ne the regression line. For certain theoretical purposes, this is
the preferred form. But for calculation, the �rst form is usually the more convenient. Only the covariance
(which requres both means) and the variance of X are needed. There is no need to determine Var [Y ] or ρ.

Example 1: The simple pair of Example 32 from "Variance"

jdemo1

jcalc

Enter JOINT PROBABILITIES (as on the plane) P

Enter row matrix of VALUES of X X

Enter row matrix of VALUES of Y Y

Use array operations on matrices X, Y, PX, PY, t, u, and P

EX = total(t.*P)

EX = 0.6420

EY = total(u.*P)

EY = 0.0783

VX = total(t.^2.*P) - EX^2

VX = 3.3016

CV = total(t.*u.*P) - EX*EY

CV = -0.1633

a = CV/VX

a = -0.0495

b = EY - a*EX

b = 0.1100 % The regression line is u = -0.0495t + 0.11

2"Variance", Example 3: Z = g (X, Y ) (Example 103 from "Mathematical Expectation: Simple Random Variables")
<http://cnx.org/content/m23441/latest/#fs-id2579889>

http://cnx.org/content/m23468/1.6/
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Example 2: The pair in Example 64 from "Variance"

Suppose the pair {X, Y } has joint density fXY (t, u) = 3u on the triangular region bounded by
u = 0, u = 1 + t, u = 1− t. Determine the regression line of Y on X.

ANALYTIC SOLUTION
By symmetry, E [X] = E [XY ] = 0, so Cov [X,Y ] = 0. The regression curve is

u = E [Y ] = 3
∫ 1

0

u2

∫ 1−u

u−1

dtdu = 6
∫ 1

0

u2 (1− u) du = 1/2 (9)

Note that the pair is uncorrelated, but by the rectangle test is not independent. With zero values of
E [X] and E [XY ], the approximation procedure is not very satisfactory unless a very large number
of approximation points are employed.

Example 3: Distribution of Example 56 from "Random Vectors and MATLAB" and

Example 12 7 from "Function of Random Vectors"

The pair {X, Y } has joint density fXY (t, u) = 6
37 (t+ 2u) on the region 0 ≤ t ≤ 2, 0 ≤ u ≤

max{1, t} (see Figure Figure 1). Determine the regression line of Y on X. If the value X (ω) = 1.7
is observed, what is the best mean-square linear estimate of Y (ω)?

Figure 1: Regression line for Example 3 (Distribution of Example 59 from "Random Vectors and
MATLAB" and Example 12 10 from "Function of Random Vectors").

ANALYTIC SOLUTION

E [X] =
6
37

∫ 1

0

∫ 1

0

(
t2 + 2tu

)
dudt+

6
37

∫ 2

1

∫ t

0

(
t2 + 2tu

)
dudt = 50/37 (10)

4"Variance", Example 6: A jointly distributed pair (Example 145 from "Mathematical Expectation; General Random
Variables") <http://cnx.org/content/m23441/latest/#fs-id1169086148672>

6"Random Vectors and MATLAB", Example 5: Marginal distribution with compound expression
<http://cnx.org/content/m23320/latest/#fs-id1169358726296>

7"Function of Random Vectors", Example 12: Continuation of Example 58 from "Random Vectors and Joint
Distributions" <http://cnx.org/content/m23332/latest/#fs-id10748979>

http://cnx.org/content/m23468/1.6/



Connexions module: m23468 4

The other quantities involve integrals over the same regions with appropriate integrands, as follows:

Quantity Integrand Value

E
[
X2
]

t3 + 2t2u 779/370

E [Y ] tu+ 2u2 127/148

E [XY ] t2u+ 2tu2 232/185

Table 1

Then

Var [X] =
779
370
−
(

50
37

)2

=
3823
13690

Cov [X,Y ] =
232
185
− 50

37
· 127
148

=
1293
13690

(11)

and

a = Cov [X,Y ] /Var [X] =
1293
3823

≈ 0.3382, b = E [Y ]− aE [X] =
6133
15292

≈ 0.4011 (12)

The regression line is u = at + b. If X (ω) = 1.7, the best linear estimate (in the mean square

sense) is
^
Y (ω) = 1.7a+ b = 0.9760 (see Figure 1 for an approximate plot).

APPROXIMATION

tuappr

Enter matrix [a b] of X-range endpoints [0 2]

Enter matrix [c d] of Y-range endpoints [0 2]

Enter number of X approximation points 400

Enter number of Y approximation points 400

Enter expression for joint density (6/37)*(t+2*u).*(u<=max(t,1))
Use array operations on X, Y, PX, PY, t, u, and P

EX = total(t.*P)

EX = 1.3517 % Theoretical = 1.3514

EY = total(u.*P)

EY = 0.8594 % Theoretical = 0.8581

VX = total(t.^2.*P) - EX^2

VX = 0.2790 % Theoretical = 0.2793

CV = total(t.*u.*P) - EX*EY

CV = 0.0947 % Theoretical = 0.0944

a = CV/VX

a = 0.3394 % Theoretical = 0.3382

b = EY - a*EX

b = 0.4006 % Theoretical = 0.4011

y = 1.7*a + b

y = 0.9776 % Theoretical = 0.9760

An interpretation of ρ2

The analysis above shows the minimum mean squared error is given by

E

[(
Y−

^
Y

)2
]

= E

[(
Y − ρσY

σX
(X − µX)− µY

)2
]

= σ2
Y E

[
(Y ∗ − ρX∗)2

]
(13)

http://cnx.org/content/m23468/1.6/
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= σ2
Y E

[
(Y ∗)2 − 2ρX∗Y ∗ + ρ2(X∗)2

]
= σ2

Y

(
1− 2ρ2 + ρ2

)
= σ2

Y

(
1− ρ2

)
(14)

If ρ = 0, then E

[(
Y−

^
Y

)2
]

= σ2
Y , the mean squared error in the case of zero linear correlation. Then,

ρ2 is interpreted as the fraction of uncertainty removed by the linear rule and X. This interpretation should
not be pushed too far, but is a common interpretation, often found in the discussion of observations or
experimental results.

More general linear regression

Consider a jointly distributed class. {Y,X1, X2, · · · , Xn}. We wish to deterimine a function U of the
form

U =
n∑

i=0

aiXi, with X0 = 1, such that E
[
(Y − U)2

]
is a minimum (15)

If U satis�es this minimum condition, then E [(Y − U)V ] = 0, or, equivalently

E [Y V ] = E [UV ] for all V of the form V =
n∑

i=0

ciXi (16)

To see this, set W = Y − U and let d2 = E
[
W 2
]
. Now, for any α

d2 ≤ E
[
(W + αV )2

]
= d2 + 2αE [WV ] + α2E

[
V 2
]

(17)

If we select the special

α = −E [WV ]
E [V 2]

then 0 ≤ −2E[WV ]2

E [V 2]
+
E[WV ]2

E[V 2]2
E
[
V 2
]

(18)

This implies E[WV ]2 ≤ 0, which can only be satis�ed by E [WV ] = 0, so that

E [Y V ] = E [UV ] (19)

On the other hand, if E [(Y − U)V ] = 0 for all V of the form above, then E
[
(Y − U)2

]
is a minimum.

Consider

E
[
(Y − V )2

]
= E

[
(Y − U + U − V )2

]
= E

[
(Y − U)2

]
+ E

[
(U − V )2

]
+ 2E [(Y − U) (U − V )] (20)

Since U − V is of the same form as V, the last term is zero. The �rst term is �xed. The second term is

nonnegative, with zero value i� U − V = 0 a.s. Hence, E
[
(Y − V )2

]
is a minimum when V = U .

If we take V to be 1, X1, X2, · · · , Xn, successively, we obtain n+1 linear equations in the n+1 unknowns
a0, a1, · · · , an, as follows.

1. E [Y ] = a0 + a1E [X1] + · · ·+ anE [Xn]
2. E [Y Xi] = a0E [Xi] + a1E [X1Xi] + · · ·+ anE [XnXi] for 1 ≤ i ≤ n

For each i = 1, 2, · · · , n, we take (2) − E [Xi] · (1) and use the calculating expressions for variance and
covariance to get

Cov [Y,Xi] = a1Cov [X1, Xi] + a2Cov [X2, Xi] + · · ·+ anCov [Xn, Xi] (21)

These n equations plus equation (1) may be solved alagebraically for the ai.

http://cnx.org/content/m23468/1.6/
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In the important special case that the Xi are uncorrelated (i.e., Cov [Xi, Xj ] = 0 for i 6= j), we have

ai =
Cov [Y,Xi]
Var [Xi]

1 ≤ i ≤ n (22)

and

a0 = E [Y ]− a1E [X1]− a2E [X2]− · · · − anE [Xn] (23)

In particular, this condition holds if the class {Xi : 1 ≤ i ≤ n} is iid as in the case of a simple random
sample (see the section on "Simple Random Samples and Statistics12).

Examination shows that for n = 1, with X1 = X, a0 = b, and a1 = a, the result agrees with that obtained
in the treatment of the regression line, above.

Example 4: Linear regression with two variables.

Suppose E [Y ] = 3, E [X1] = 2, E [X2] = 3, Var [X1] = 3, Var [X2] = 8, Cov [Y,X1] = 5,
Cov [Y,X2] = 7, and Cov [X1, X2] = 1. Then the three equations are

a0 + 2a2 + 3a3 = 3

0 + 3a1 + 1a2 = 5

0 + 1a1 + 8a2 = 7

(24)

Solution of these simultaneous linear equations with MATLAB gives the results
a0 = −1.9565, a1 = 1.4348, and a2 = 0.6957.

12"Simple Random Samples and Statistics" <http://cnx.org/content/m23496/latest/>

http://cnx.org/content/m23468/1.6/


