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Martingale Sequences: The Concept, Examples, and Basic Patterns

Summary
The notion of martingales and related concepts seem to have originated in
studies of games of chance. Certain patterns were identified and extended to more
general sequences of random variables.  The resulting abstract theory provides a basis for many applications, both theoretical and practical.




1. The concept, examples, and basic patterns



A classical example



 The notion of martingales and related concepts seem to have originated in
studies of games of chance similar to the following.  Suppose
 	      
                     Y
                     
                        n
                      =  a gambler's “gain” on the nth play of a game

	      
                     Y
                     0 =  the original capital or “bankroll”



 Set 
               X
               
                  n
                = 0 for .  Thus, Xn
             is the capital after n plays, and
(1)

 Put  and .  
For any 
               n ∈ N
            ,  and  or, equivalently,
.  Hence 
         
 If YN
             is an independent class with , the game
is considered fair.  In this case, we have by (CE5), (CE7), and hypothesis
(2)

 Also   
         
 Gamblers seek to develop a “system” to improve expected earnings.  We examine some
typical approaches and show their futility.  To keep the analysis simple, consider a
simple coin-flipping game.  Let
 	      
                     H
                     
                        k
                      =  event of a “head” on the kth component trial

	      
                     T
                     
                        k
                      = H
                     
                        k
                     
                     
                        c
                      =  event of a “tail” on the kth component trial



 The player has a system.  He decides how much to bet on each play from the
pattern of previous events.  Let  be the result
of the nth play, where  |B
               
                  n
               | is the amount of the bet;  
               B
               
                  n
                > 0 indicates a
bet on a head;  
               B
               
                  n
                < 0 indicates a bet on a tail;  
               B = 0 indicates a decision not
to bet.
 Systems take various forms;  here we consider two possibilities.
 	 The amount of the bet is determend by the pattern of outcomes of
previous tosses

(3)


               

	 The amount bet is determined by the pattern of previous payoffs

(4)


               



 Let 
               Y
               0 = X
               0 = C
            , a constant.  Since C is independent of any random variable,

               E[H|C] = E[H]. In either scheme, by (CE8), (CI5), and the fact 
         
(5)

 It follows that
(6)

 The “fairness” of the game is not altered by the betting scheme, since decisions
must be based on past performance.  
In spite of simple beginnings, the extension and analysis of these patterns form a
major thrust of modern probability theory.


2. Formulation of the concept



 In the following treatment,
 	
                is the basic sequence     

            

	
                is the incremental sequence
            



(7)

 We suppose ZN
          is a decision sequence and 
            X
            
               N
             ∼ Z
            
               N
            
         ; that is,
.
 	 
               
                  X
                  
                     N
                   ∼ Z
                  
                     N
                  
                iff 
                  Y
                  
                     N
                   ∼ Z
                  
                     N
                  
               
            

	 If 
                  X
                  
                     N
                   ∼ H
                  
                     N
                  
                and 
                  H
                  
                     N
                   ∼ Z
                  
                     N
                  
               , then

                  X
                  
                     N
                   ∼ Z
                  
                     N
                  
               .  In particular, if , then 
                  X
                  
                     N
                   ∼ H
                  
                     N
                  
               .




 
         Definition.  If XN
          is integrable and ZN
          is a decision sequence, then
 	 
               XN
                is a martingale (MG) relative to ZN
                iff

(8)


            

	 
               XN
                is a submartingale (SMG) relative to ZN
                iff

(9)


            

	 
               XN
                is a supermartingale (SRMG) relative to ZN
                iff

(10)


            



 
         Notation.  When we write  is a martingale (submartingale,
supermartingale), we are asserting XN
          is integrable, ZN
          is a decision sequence,

            X
            
               N
             ∼ Z
            
               N
            
         , and XN
          is a MG (SMG, SRMG) relative to ZN
         .
 
         Definition.  If YN
          is integrable and ZN
          is a decision sequence, then
 	 
               YN
                is absolutely fair relative to ZN
                iff

(11)


            

	 
               YN
                is favorable relative to ZN
                iff

(12)


            

	 
               YN
                is unfavorable relative to ZN
                iff

(13)


            



 
         Notation.  When we write  is absolutely fair (favorable,
unfavorable), we are asserting YN
          is integrable, ZN
          is a decision sequence,

            Y
            
               N
             ∼ Z
            
               N
            
         , and YN
          is absolutely fair (favorable, unfavorable)
relative to ZN
         .
   IXA2-2
      
 Theorem 1. IXA2-1

         
         
 If XN
                is a basic sequence and YN
                is the corresponding incremental
sequence, then
 	 
                      is a martingale iff  is absolutely fair.


	 
                      is a submartingale iff  is favorable.


	 
                      is a supermartingale iff  is unfavorable.







         Proof



 Let * be any one of the symbols , or  ≤ .  Then by linearity and (CE7)
            
(14)



      


 
        Remarks
      
 	 
                is a SMG iff  is a SRMG


	 We write (S)MG to indicate the same statement can be made for a MG or a SMG with
the appropriate choice of = or  ≥ 
            

	 We write ( ≥ ) to indicate simultaneously two cases:

 	
                         read as = in all places (for a MG)

	
                         read as  ≥  in all places (for a SMG)





            




3. Some Basic Patterns



 Theorem 2. IXA3-1

        
         
 If  is a (S)MG and 
                  X
                  
                     N
                   ∼ H
                  
                     N
                  
               , with

                  H
                  
                     N
                   ∼ Z
                  
                     N
                  
               ,  then  is a (S)MG.


      
         Proof



 Let .  By (CE9), the (S)MG definition,
monotonicity, and (CE7)
            
(15)



      


 Theorem 3. IXA3-2

         
         
 For integrable 
                  X
                  
                     N
                   ∼ Z
                  
                     N
                  
               , the following are equivalent
            
 
               
            


         Proof



 	 
                  b  a: as a  special case

	 
                  a  b: By (CE9), (a), and monotonicity
(16)


                  
                     k – 1 iterations yield   
               
	 
                  d  c: as a  special case

	 
                  c  a: By (CE1) and (c),   .  
Since  and , the result
follows from the uniqueness property (E5)
               
	 
                  b  d: By (CE1), (b), and monotonicity  
               

 We thus have 
                  d ⇒ c ⇒ a ⇔ b ⇒ d
               
            


      


 Corollary 1. IXA3-3

        
         
 If  is a (S)MG, then 
            


      


 Theorem 4. IXA3-4
     
              
         
 
                is a (S)MG iff 
            


         Proof



 EXERCISE.  Note 
            


      


 
         IXA3-2
      
 Theorem 5. IXA3-5

         
         
 If  is an 
                  L
                  2
                MG, then
     
               
            


         Proof



 	 
                      by (CE1b) and Thm IXA3-4
                  

	 
                      by (CE1b),
(CE8), and Thm IXA3-4
                  

	 As in b, since 
                        X
                        
                           n
                         – X
                        
                           m
                         ∼ W
                        
                           n
                        
                     
                  

	 Suppose 
                        p < q
                     .  Then, since 
                        X
                        
                           p
                         ∼ W
                        
                           p
                        
                     ,   by definition of MG.  
For 
                        q < p
                     , interchange  in the argument above.


	 
                      by d, above


	 By c,  for 
                        j ≠ k
                     .  Hence,

                  





      


 A variety of weighted sums of increments are useful.
 Theorem 6. IXA3-6

        
         
 Suppose  is a (S)MG and YN
                is the incremental sequence.
Let H0
                be a (nonnegative) constant and let , be
bounded (nonnegative).  Set
(17)

 Then  is a (S)MG.


         Proof



 
                by (CE8)
            
 For MG case:    for arbitrary bounded Hn
               
            
 For SMG case:    for 
                  H
                  
                     n
                   ≥ 0, bounded
 The  conclusion follows from Theorem 1. IXA2-1
            


      


 
         Remark.  This result extends the pattern in the introductory gambling example.
  Theorem 4. IXA3-4 IXA3-3
 Theorem 7. IXA3-7

        
         
 In Theorem IXA3-6, if  and 0 ≤ H
                  
                     n
                   ≤ 1a.s.∀n ∈ N
               , then 
            


      
         Proof



 
               , by hypothesis, and
, by (CE8).  
Thus, by monotonicity and (CE1b)
            
(18)

 Hence
(19)



      


 
        Some important special cases
      
 Theorem 8. IXA3-8

        
         
 Suppose integrable 
                  X
                  
                     N
                   ∼ Z
                  
                     N
                  
               .  If  
                  X
                  
                     n + 1 – X
                  
                     n
                  ( ≥ )0a.s.∀n ∈ N
               , then  is a (S)MG.


      
         Proof



 Apply monotonicity and  Theorem IXA3-4
            


      


 Theorem 9. IXA3-9

        
         
 Suppose XN
                has independent increments.
 	 If , invariant with n, then XN
                      is a MG.


	 If ,  
then  is a (S)MG.







         Proof



 	 For any n, consider any .  By independent increments,
 is independent.  Hence,
.
The desired result follows from Theorem IXA3-2(c).







      


 Theorem 10. IXA3-10

        
         
 Suppose g is a convex Borel function on an interval I which contains the
range of all Xn
                and
 
               ,  Let
,
 	 If  is a MG, then  is a SMG.


	 If g is nondecreasing and  is a SMG, then
so is 
                  





         Proof



 	 
                  a.   : By Jensen's inequality and the definition of a MG
(20)


               
	 
                  b.   : By Jensen's inequality
(21)


Since  and g is nondecreasing, we have
(22)


               



      


 
        Some commonly utilized convex functions
      
 	 
               
            
                  g
              (
              t
              )
               = 
              |
              t
              |
            
          
            

	 
               
                  g(t) = t
                  2
               
               g is increasing for 
                  t ≥ 0
            

	 
               
                  g(t) = u(t)t
               
               
               g nondecreasing for all t
            

	 
               
               
               g nonincreasing for all t
            

	 
               
               g is increasing for all t
            



 Theorem 11. IXA3-11

        
         
 Consider integrable 
                  X
                  
                     N
                   ∼ Z
                  
                     N
                  
               .
 	 If   and
, then
 is a MG


	 If   and
, then
 is a SMG







         Proof



(23)

 The restrictionl 
                  a > 0 is needed in the  ≥  case.
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