Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Wiskunde Graad 7 » Nog hersiening

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

In these lenses

  • GETSenPhaseMaths display tagshide tags

    This collection is included inLens: Siyavula: Mathematics (Gr. 7-9)
    By: Siyavula

    Collection Review Status: In Review

    Click the "GETSenPhaseMaths" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Nog hersiening

Module by: Siyavula Uploaders. E-mail the author

WISKUNDE

Desimale Breuke

OPVOEDERS AFDELING

Memorandum

13.4

Table 1
     
a) 2 6010060100 size 12{ { { size 8{"60"} } over { size 8{"100"} } } } {} 2,60
b) 13 62510006251000 size 12{ { { size 8{"625"} } over { size 8{"1000"} } } } {} 13,625
c) 17 7510075100 size 12{ { { size 8{"75"} } over { size 8{"100"} } } } {} 17,75
d) 23 87510008751000 size 12{ { { size 8{"875"} } over { size 8{"1000"} } } } {} 23,875
e) 36 810810 size 12{ { { size 8{8} } over { size 8{"10"} } } } {} 36,8

13.5 a) 0,83

  1. a) 0,2857142
  2. b) 0,8125
  3. c) 0,4

13.6

Table 2
9 2 9 2 size 12{ { { size 8{9} } over { size 8{2} } } } {} 11 2 11 2 size 12{ { { size 8{"11"} } over { size 8{2} } } } {} 325 100 325 100 size 12{ { { size 8{"325"} } over { size 8{"100"} } } } {} 43 5 43 5 size 12{ { { size 8{"43"} } over { size 8{5} } } } {} 201 8 201 8 size 12{ { { size 8{"201"} } over { size 8{8} } } } {} 4056 1000 4056 1000 size 12{ { { size 8{"4056"} } over { size 8{"1000"} } } } {} 199 5 199 5 size 12{ { { size 8{"199"} } over { size 8{5} } } } {}
4 1212 size 12{ { { size 8{1} } over { size 8{2} } } } {} 5 1212 size 12{ { { size 8{1} } over { size 8{2} } } } {} 3 2510025100 size 12{ { { size 8{"25"} } over { size 8{"100"} } } } {} 8 3535 size 12{ { { size 8{3} } over { size 8{5} } } } {} 25 1818 size 12{ { { size 8{1} } over { size 8{8} } } } {} 4 561000561000 size 12{ { { size 8{"56"} } over { size 8{"1000"} } } } {} 39 4545 size 12{ { { size 8{4} } over { size 8{5} } } } {}
4,5 5,5 3,25 8,6 25,125 4,056 39,8

14. a) 0,3

  1. a) 0,6
  2. b) 0,23

Leerders Afdeling

Inhoud

AKTIWITEIT: Nog hersiening [LU 1.4.2, LU 1.10, LU 2.3.1, LU 2.3.3]

Ons kan breuke soos volg na desimale breuke herlei:

Figure 1
Figure 1 (graphics1.png)

13.2 Het jy geweet?

Ons kan dit ook so bereken:

Figure 2
Figure 2 (graphics2.png)

13.3 Watter van die bogenoemde metodes verkies jy?

Hoekom?

Figure 3
Figure 3 (graphics3.png)
13.4 Voltooi die volgende tabelle:

13.5 Gebruik die deelmetode soos by 13.2 en skryf die volgende breuke as desimale breuke:

a) 5656 size 12{ { {5} over {6} } } {} ........................................................................... ...........................................................................

...........................................................................

b) 2727 size 12{ { {2} over {7} } } {} ........................................................................... ...........................................................................

...........................................................................

c) 13161316 size 12{ { {"13"} over {"16"} } } {} ........................................................................... ...........................................................................

...........................................................................

d) 4949 size 12{ { {4} over {9} } } {} ........................................................................... ...........................................................................

...........................................................................

13.6 Kan jy die volgende tabel voltooi??

Table 3
Onegte breuk 9 2 9 2 size 12{ { { size 8{9} } over { size 8{2} } } } {}     45 5 45 5 size 12{ { { size 8{"45"} } over { size 8{5} } } } {}      
Gemengde getal   5 1 2 5 1 2 size 12{5 { { size 8{1} } over { size 8{2} } } } {}     25 1 8 25 1 8 size 12{"25" { { size 8{1} } over { size 8{8} } } } {}   39 4 5 39 4 5 size 12{"39" { { size 8{4} } over { size 8{5} } } } {}
Desimale breuk     3,25     4,056  

14. KOPKRAPPERS!

Probeer eers sonder ’n sakrekenaar! Skryf die volgende breuke as desimale breuke:

a) 1313 size 12{ { {1} over {3} } } {} ........................................................................... ...........................................................................

...........................................................................

b) 2323 size 12{ { {2} over {3} } } {} ........................................................................... ...........................................................................

...........................................................................

c) 23992399 size 12{ { {"23"} over {"99"} } } {} ........................................................................... ...........................................................................

...........................................................................

15. Onthou jy nog?

Ons noem 0,666666666 . . . ’n repeterende desimaal. Ons skryf dit as 0,60,6 size 12{0, {6} cSup { size 8{ cdot } } } {}.

Net so is 0,454545 . . . ook ’n repeterende desimaal en ons skryf dit 0,450,45 size 12{0, {4} cSup { size 8{ cdot } } {5} cSup { size 8{ cdot } } } {}.

Ons rond dit gewoonlik af tot 1 of 2 syfers na die desimale teken: 0,60,6 size 12{0, {6} cSup { size 8{ cdot } } } {} word 0,7 of 0,67 en 0,450,45 size 12{0, {4} cSup { size 8{ cdot } } {5} cSup { size 8{ cdot } } } {} word 0,5 of 0,45

16. Tyd vir self-assessering

Table 4
  • Maak ’n merkie in die toepaslike blokkie:
JA NEE  
Ek kan:      
Desimale breuke met mekaar vergelyk en korrek orden      
Die korrekte verwantskapstekens invul      
Desimale breuke korrek afrond tot:      
  • die naaste heelgetal
     
  • een syfer na die desimale teken
     
  • twee syfers na die desimale teken
     
  • drie syfers na die desimale teken
     
Breuke en gemengde getalle korrek na desimale breuke herlei      
Verduidelik wat ’n repeterende desimaal i s      

Assessering

Leeruitkomste 1:Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.4: Dit is duidelik wanneer die leerder herken en gebruik ekwivalente vorms van die bogenoemde rasionale getalle, insluitend:

1.4.2 desimale breuke;

Assesseringstandaard 1.0: Dit is duidelik wanneer die leerder ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid daarvan te beoordeel.

Leeruitkomste 2:Die leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel en probleme op te los deur algebraïese taal en vaardighede te gebruik.

Assesseringstandaard 2.3: Dit is duidelik wanneer die leerder voorstellings maak van en verwantskappe tussen veranderlikes gebruik sodat inset- en/of uitsetwaardes op ‘n verskeidenheid maniere bepaal kan word deur die gebruik van:

2.3.1 woordelikse beskrywings;

2.3.3 tabelle.

Collection Navigation

Content actions

Download:

Collection as:

EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks