Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » Wiskunde Graad 7 » Deling deur veelvoude van 10

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

In these lenses

  • GETSenPhaseMaths display tagshide tags

    This collection is included inLens: Siyavula: Mathematics (Gr. 7-9)
    By: Siyavula

    Collection Review Status: In Review

    Click the "GETSenPhaseMaths" link to see all content selected in this lens.

    Click the tag icon tag icon to display tags associated with this content.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Deling deur veelvoude van 10

Module by: Siyavula Uploaders. E-mail the author

WISKUNDE

Desimale Breuke

OPVOEDERS AFDELING

Memorandum

23.4.2 a) 0,041

  1. a) 0,81
  2. b) 0,0093
  • b en c

23.6 a) 1,234

  1. a) 0,845
  2. b) 7,23

25. a) R51

  1. a) R211,59
  2. b) 21160c
  3. c) R2,90
  4. d) Ja

Koste per oproep: R1,77

  1. a) 91,5
  2. b) R102,13
  3. c) R1,28 x 24 = R30,72
  4. d) R3,27
  5. e) Eie antwoord

Leerders Afdeling

Inhoud

AKTIWITEIT: Deling deur veelvoude van 10 [LU 1.5.1, LU 1.7.5]

23.4 DELING DEUR VEELVOUDE VAN 10

23.4.1 Onthou jy nog?

a) As ek 0,8 deur 40 moet deel, doen ek dit so:

0,8 ÷ 40 = (0,8 ÷ 10) ÷ 4

= 0,08 ÷ 4

= 0,02

b) As ek 4,2 deur 600 moet deel, sê ek:

4,2 ÷ 600 = (4,2 ÷ 100) ÷ 6

= 0,042 ÷ 6

= 0,007

23.4.2 Bereken die volgende sonder ’n sakrekenaar:

a) j = 3,28 ÷ 80

…………………………………………………………………………………………..

…………………………………………………………………………………………..

b) d = 567 ÷ 700

…………………………………………………………………………………………..

…………………………………………………………………………………………..

c) g = 18,6 ÷ 2 000

…………………………………………………………………………………………..

…………………………………………………………………………………………..

23.5 DELING DEUR DESIMALE BREUKE

23.5.1 Werk saam met ’n maat deur die volgende voorbeelde:

’n Rol materiaal is 11,25 m lank. Om een rok te maak, word 1,5 m materiaal benodig. Hoeveel rokke kan uit die rol materiaal gesny word?

a) Ek moet 11,25 ÷ 1,5 bereken.Ek verander die desimale getalle eers na breuke:

11,25=1125100=111411,25=1125100=1114 size 12{"11","25"="11" { { size 8{"25"} } over { size 8{"100"} } } ="11" { { size 8{1} } over { size 8{4} } } } {} en 1,5=1510=1121,5=1510=112 size 12{1,5=1 { { size 8{5} } over { size 8{"10"} } } =1 { { size 8{1} } over { size 8{2} } } } {}

11 1 4 ÷ 1 1 2 = 45 4 ÷ 3 2 45 4 × 2 3 7 1 2 11 1 4 ÷ 1 1 2 = 45 4 ÷ 3 2 45 4 × 2 3 7 1 2 alignl { stack { size 12{"11" { { size 8{1} } over { size 8{4} } } div 1 { { size 8{1} } over { size 8{2} } } = { { size 8{"45"} } over { size 8{4} } } div { { size 8{3} } over { size 8{2} } } } {} # = { { size 8{"45"} } over { size 8{4} } } times { { size 8{2} } over { size 8{3} } } {} # =7 { { size 8{1} } over { size 8{2} } } {} } } {}
(1)

Ek maak gebruik van ekwivalente breuke:

11 , 25 ÷ 1,5 = 11 , 25 1,5 × 10 10 = 112 , 5 15 7,5 7 1 2 11 , 25 ÷ 1,5 = 11 , 25 1,5 × 10 10 = 112 , 5 15 7,5 7 1 2 alignl { stack { size 12{"11","25" div 1,5= { { size 8{"11","25"} } over { size 8{1,5} } } times { { size 8{"10"} } over { size 8{"10"} } } = { { size 8{"112",5} } over { size 8{"15"} } } } {} # =7,5 {} # =7 { { size 8{1} } over { size 8{2} } } ` {} } } {}
(2)

c) Ek moet 11,25 ÷ 1,5 bereken.Ek wil die deler na ’n heelgetal verander sodat ek makliker kan deel.

1,5 × 10 = 15

Nou moet ek net die deeltal ook met 10 vermenigvuldig!

Figure 1
Figure 1 (graphics1.png)
11,25 × 10 = 112,5

Die antwoord is dus 7,5 rokke.

23.5.2 Watter van die bogenoemde metodes is eintlik presies dieselfde?

…………………………………………………………………………………………..

…………………………………………………………………………………………..

23.6 Bereken die volgende deur eers die deler na ’n heelgetal te verander:

a) q = 0,88848 ÷ 0,72

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

b) p = 0,14365 ÷ 0,17

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

c) v = 0,30366 ÷ 0,042

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

24. Tyd vir selfassessering

Table 1
  • Merk die toepaslike blokkie met ’n regmerkie:
JA NEE  
Ek kan desimale breuke korrek deur 10 deel      
Ek kan desimale breuke korrek deur 100 deel      
Ek kan desimale breuke korrek deur 1 000 deel      
Ek weet hoe om desimale breuke deur veelvoude van 10 te deel      
Ek kan desimale breuke korrek deur desimale breuke deel      

25. Kyk na die volgende telefoonrekening en beantwoord dan die vrae. Jy mag jou sakrekenaar gebruik.

Figure 2
Figure 2 (graphics2.png)

a) Rond die koste van die oorsese oproep af tot die naaste rand. ………………..

b) Wat was die totale koste van die oproepe wat gemaak is? ……………………

c) Rond bogenoemde antwoord af tot die naaste sent. …………………………

d) What was the average cost of each cell phone (Vodacom) call? ………………

e) Is MTN goedkoper as Vodacom? ......................... Motiveer.

…………………………………………………………………………………………..

f) Rond die koste van die nasionale oproepe (0 – 50 km) af tot 1 syfer na die desimale teken.

…………………………………………………………………………………………..

g) Wat is die totale koste van die nasionale oproepe? ……………………………

h) As twee “ShareCall” oproepe R1,28 kos, wat sal 48 sulke oproepe kos?

…………………………………………………………………………………………..

i) Die rekening word betaal met ’n R200-noot en ‘n R20-noot. Hoeveel kleingeld moet jy kry?

…………………………………………………………………………………………..

j) Wat is JULLE telefoonrekening gemiddeld per maand oor ‘n tydperk van een jaar?

…………………………………………………………………………………………..

Assessering

Leeruitkomste 1:Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.5: Dit is duidelik wanneer die leerder probleme in konteks oplos, insluitend kontekste wat gebruik kan word om ‘n bewustheid van ander leerareas, asook van menseregte-, sosiale, ekonomiese en omgewingsake, te bevorder, soos:

1.5.1 finansiële kontekste (insluitend wins en verlies, begrotings, rekeninge, lenings, enkelvoudige rente, huurkoop, wisselkoerse);

Assesseringstandaard 1.7: Dit is duidelik wanneer die leerder skat en bereken deur geskikte bewerkings vir probleme wat die volgende behels, te kies en te gebruik:

1.7.5 deling van positiewe desimale getalle van minstens 3 desimale plekke deur heelgetalle.

Collection Navigation

Content actions

Download:

Collection as:

EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks