Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Elementary Statistics » Introduction

Navigation

Table of Contents

Recently Viewed

This feature requires Javascript to be enabled.
 

Introduction

Module by: Kathy Chu, Ph.D.. E-mail the author

Based on: Continuous Random Variables: Introduction by Susan Dean, Barbara Illowsky, Ph.D.

Summary: This module serves as an introduction to the Continuous Random Variables chapter in the Elementary Statistics textbook.

Student Learning Objectives

By the end of this chapter, the student should be able to:

  • Recognize and understand continuous probability density functions in general.
  • Recognize the uniform probability distribution and apply it appropriately.

Introduction

Continuous random variables have many applications. Baseball batting averages, IQ scores, the length of time a long distance telephone call lasts, the amount of money a person carries, the length of time a computer chip lasts, and SAT scores are just a few. The field of reliability depends on a variety of continuous random variables.

This chapter gives an introduction to continuous random variables and the many continuous distributions. We will be studying these continuous distributions for several chapters.

The characteristics of continuous random variables are:

  • The outcomes are measured, not counted.
  • Geometrically, the probability of an outcome is equal to an area under a mathematical curve called the density curve, fxfx.
  • Each individual value has zero probability of occurring. Instead we find the probability that the value is between two endpoints.

We will start with a simplest continuous distributions, the Uniform.

NOTE:

The values of discrete and continuous random variables can be ambiguous. For example, if XX is equal to the number of miles (to the nearest mile) you drive to work, then XX is a discrete random variable. You count the miles. If XX is the distance you drive to work, then you measure values of XX and XX is a continuous random variable. How the random variable is defined is very important.

Glossary

Uniform Distribution:
A continuous random variable (RV) that has equally likely outcomes over the domain, a<x<ba<x<b size 12{a<x<b} {}. Often referred as the Rectangular distribution because the graph of the pdf has the form of a rectangle. Notation: X~U(a,b)X~U(a,b) size 12{X "~" U \( a,b \) } {}. The mean is μ=a+b2μ=a+b2 size 12{μ= { {a+b} over {2} } } {} and the standard deviation is σ= (b-a)2 12 σ (b-a)2 12 The probability density function is fX = 1b-a fX=1b-a for a<X<b a X b or aXb a X b. The cumulative distribution is P(Xx)=xabaP(Xx)=xaba size 12{P \( X <= x \) = { {x-a} over {b-a} } } {}.
Exponential Distribution:
A continuous random variable (RV) that appears when we are interested in the intervals of time between some random events, for example, the length of time between emergency arrivals at a hospital. Notation: X~Exp(m)X~Exp(m) size 12{X "~" ital "Exp" \( m \) } {}. The mean is μ=1mμ=1m size 12{μ= { {1} over {m} } } {} and the standard deviation is σ = 1 m σ= 1 m . The probability density function is f(x)=memx,f(x)=memx, size 12{f \( x \) = ital "me" rSup { size 8{- ital "mx"} } ," "} {} x 0 x 0 and the cumulative distribution function is P(Xx)=1emxP(Xx)=1emx size 12{P \( X <= x \) =1-e rSup { size 8{- ital "mx"} } } {}.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks