
Connexions module: m32159 1

Practical 2 - Compiler

Optimizations and Timing Routines
∗

Tim Stitt Ph.D.

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

In this module you will gain some insight into the e�ect of Cray compiler optimization options, as

well as hand-tuning optimizations, on the execution performance of a simple scienti�c kernel. You will

also discover di�erent techniques for timing the runtime performance of a complete code, or regions of

the code.

1 Introduction

In this practical you will experiment with the optimization �ags on the Cray compiler, to observe their e�ect
on the runtime performance of a simple scienti�c kernel. Furthermore, you will be given the opportunity
to perform some "hand-tuning" on the source code. You will also be introduced to methods for timing the
runtime performance of your complete source code, or individual segments of it. If you require any assistance,
please do not hesitate to contact the available support sta�.

1.1 Objectives

The objectives of this practical are to gain experience in:

i. applying compiler optimization �ags and observing their e�ect
ii. applying "hand-tuned" optimizations and observing their e�ect
iii. timing the runtime performance of complete codes and individual instruction blocks

2 Timing

Calculating the time your code requires to execute is bene�cial for comparing runtime performance between
various code modi�cations and/or the application of compiler optimization �ags.

∗Version 1.4: Oct 5, 2009 3:14 am -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m32159/1.4/

Connexions module: m32159 2

2.1 Timing Complete Program Execution

The elapsed real time (wallclock) of an executing program can be obtained at the command line using the
time utility.

Example 1: Invoking The time Utility
> time app

real 0m4.314s

user 0m3.950s

sys 0m0.020s

The time utility returns 3 timing statistics:

real the elapsed real time between invocation and termination

user the amount of CPU time used by the user's program

sys the amount of CPU time used by the system in support of the user's program

Table 1: Statistics Returned By The 'time' Utility

note: Typically the real time and user+sys time are the same. In some circumstances they may
be unequal due to the e�ect of other running user programs and/or excessive disk usage.

Frequently it is useful to time speci�c regions of your code. This may be because you want to identify
particular performance hotspots in your code, or you wish to time a speci�c computational kernel. Both
C and Fortran90 provide routines for recording the execution time of code blocks within your source.

2.2 Timing Code Regions in Fortran90

Fortran Language Timers
The Fortran90 language provides two portable timing routines; system_clock() and cpu_time().

Example 2: system_clock()
The system_clock() routine returns the number of seconds from 00:00 Coordinated Universal
Time (CUT) on 1 JAN 1970. To get the elapsed time, you must call system_clock() twice, and
subtract the starting time value from the ending time value.

important: To convert from the tick-based measurement to seconds, you need to divide by the
clock rate used by the timer.

integer :: t1, t2, rate

call system_clock(count=t1, count_rate=rate)

! ...SOME HEAVY COMPUTATION...

call system_clock(count=t2)

print *, "The elapsed time for the work is ",real(t2-t1)/real(rate)

Example 3: cpu_time()
The cpu_time() routine returns the processor time taken by the process from the start of the
program. The time measured only accounts for the amount of time that the program is actually
running, and not the time that a program is suspended or waiting.

http://cnx.org/content/m32159/1.4/

Connexions module: m32159 3

real :: t1, t2

call cpu_time(t1)

! ...SOME HEAVY COMPUTATION...

call cpu_time(2)

print *, "The elapsed time for the work is ",(t2-t1)

MPI Timing
To obtain the wallclock time for an individual MPI process, you can use the mpi_wtime() routine. This
routine returns a double precision number of seconds, representing elapsed wall-clock time since an event in
the past.

Example 4: mpi_wtime()

DOUBLE PRECISION :: start, end

start = MPI_Wtime()

! ...SOME HEAVY COMPUTATION...

end = MPI_Wtime()

print *,'That took ',(end-start),' seconds'

OpenMP Tip: In OpenMP codes you can can time individual threads with omp_get_wtime().

2.3 Timing Code Regions in C

C Language Timers
The C language provides the portable timing routine clock().

Example 5: clock()
Like the Fortran90 system_clock() routine, the C clock() routine is tick-based and returns the
number of clock ticks elapsed since the program was launched.

important: To convert from the tick-based measurement to seconds, you need to divide the elapsed
ticks by the macro constant expression CLOCKS_PER_SEC.

#include <stdio.h>
#include <time.h>

int main(void)

{

clock_t t1,t2;

double elapsed;

http://cnx.org/content/m32159/1.4/

Connexions module: m32159 4

t1=clock();

// SOME HEAVY COMPUTATION

t2=clock();

elapsed=t2-t1;

printf("The elapsed time for the work is %f",elapsed/CLOCKS_PER_SEC);

return 0;

}

MPI Timing
Like Fortran90 codes, you can obtain the wallclock time for an individual MPI process, using theMPI_Wtime()
routine. This routine returns a double precision number of seconds, representing elapsed wall-clock time since
an event in the past.

Example 6: mpi_wtime()

double t1, t2;

t1 = MPI_Wtime();

// SOME HEAVY CALCULATIONS

t2 = MPI_Wtime();

printf("MPI_Wtime measured an elapsed time of: %1.2f\n", t2-t1);

fflush(stdout);

OpenMP Tip: Also like Fortran90, C-based OpenMP codes can be timed with omp_get_wtime().

3 The "Naïve" Matrix Multiplication Algorithm

Matrix multiplication is a basic building block in many scienti�c computations; and since it is an O(n3)
algorithm, these codes often spend a lot of their time in matrix multiplication.

The most naïve code to perform matrix multiplication is short, sweet, simple and very very slow. The
naïve matrix multiply algorithm is highlighted in Figure 1.

Figure 1: The "naïve" Matrix-Multiplication Algorithm

For each corresponding row and column, a dot product is formed as shown in Figure 2.

http://cnx.org/content/m32159/1.4/

Connexions module: m32159 5

Figure 2: Matrix-Multiplication is composed of repeated dot-product operations

The naïve matrix-multiplication algorithm can be implemented as follows:

for i = 1 to n

for j = 1 to m

for k = 1 to m

C(i,j) = C(i,j) + A(i,k) * B(k,j)

end for

end for

end for

Naïve Matrix-Multiplication Implementation

In the following exercises you will use the naïve matrix-multiplication implementation to experiment with
various compiler optimization options, as well as "hand-coded" tuning, to deliver the best performance on
this simple scienti�c kernel.

4 Compiler Optimization Flags

Fortran90 Template
For this practical, use the template codematmul.f90 provided in ../Practicals/Practical_2/Fortran90
C Template
For this practical, use the template code matmul.c provided in ../Practicals/Practical_2/C

Exercise 1: Compiler Flag Optimizations
Read the section on compiler optimization �ags in the Cray compiler manpages i.e.

Fortran Compiler Manpages

man crayftn (line 678)

or
C Compiler Manpages

man craycc (line 509)

http://cnx.org/content/m32159/1.4/

Connexions module: m32159 6

Listing Optimizations: If you want to know what compiler optimization options are applied at
levels -O0, -O1, -O2 and -O3 then compile your code with the additional option -eo e.g. ftn -O2
-eo -o foo foo.f90

Exercise 2: Applying Optimization Flags (Solution on p. 8.)

Compile and execute a separate copy of the naïve matrix-multiplication implementation for each
compiler optimization �ag; -O0, -O1, -O2 and -O3. Record your observed timings in a table like
the one shown in Table 2.

Timing Tip: Use the time utility in your batch script to request the elapsed time for each calcu-
lation. The timings reported by the time utility will be displayed in the standard error log�le e.g.
jobOutput.e12345

Submission Tip: Request a maximum of 10 minutes for your batch jobs

Optimization Flag Wallclock Time (sec)

-O0

-O1

-O2

-O3

Table 2: Timings Table for Matrix-Multiply Kernel

Exercise 3: Timing The Matrix-Multiplication Kernel (Solutions on p. 8.)

By using the time utility to record the timing statistics for the entire code, we are including the
overhead time it takes to populate the matrices A and B with initial values. For large matrices, this
overhead time could be quite signi�cant and hence skew the recorded time for the matrix-multiply
kernel calculation.

To ensure we are only recording the time for the matrix-multiplication kernel, we should wrap
the matrix-multiply code block with source-level timing routines.

Using the language-level timing routines discussed earlier, record the time taken for the matrix-
multiply kernel only. How do these times compare to the overall execution time?

Testing Tip: Only record results for -O0 and -O2 compiler optimization �ags

5 "Hand-Tuned" Optimizations

Sometimes it is possible to generate further performance by manually applying optimizations to your source
code instructions. In the following exercises you will gain some experience in hand-coding simple optimiza-
tions into the naïve matrix-multiply implementation.

http://cnx.org/content/m32159/1.4/

Connexions module: m32159 7

5.1 Fortran90 Programmers Only

The element order in which 2D arrays are traversed can have a signi�cant performance impact between
Fortran and C languages. In C, 2D arrays are stored in memory using row-major order. In Fortran, arrays
are stored in memory using column-major order.

Exercise 4: Loop Re-ordering (Solutions on p. 8.)

The naïve matrix-multiply Fortran90 implementation su�ers in performance because its inner-most
loops traverse array rows and not columns (this prevents the cache from being used e�ciently).

Try to improve the performance of the Fortran90 implementation by maximizing column traver-
sals. What performance gains do you achieve for -O0 and -O2 compiler �ags? What order of indices
I, J and K gives the best performance?

tip: Modern compilers are very good at detecting sub-optimal array traversals and will try to
reorder the loops automatically to maximize performance.

Exercise 5: Loop Unrolling (Advanced) (Solutions on p. 9.)

Manually unrolling loops can sometimes lead to performance gains by reducing the number of
loop tests and code branching, at the expense of a larger code size. If the unrolled instructions are
independent of each other, then they can also be executed in parallel.

tip: Review loop unrolling by consulting the course slides here1.

Try to achieve performance improvement on the original naïve matrix-multiplication implementa-
tion by applying the loop unrolling technique. Compare your unrolled version against the results
obtained with the -O0 and -O2 compiler �ags.

What performance improvement do you get when you unroll 8 times?

1"Introduction to HPC (slideshow)" <http://cnx.org/content/m31999/latest/>

http://cnx.org/content/m32159/1.4/

Connexions module: m32159 8

Solutions to Exercises in this Module

Follow-Up to Exercise (p. 6)
Are the results exactly the same for each �ag?
Fortran Solution A to Exercise (p. 6)

real :: t1,t2

...MATRIX INITIALIZATION...

call cpu_time(t1)

! Perform the matrix-multiplication

do I=1,N

do J=1,N

do K=1,N

C(I,J)=C(I,J)+A(I,K)*B(K,J)

end do

end do

end do

call cpu_time(t2)

print *,"The time (in seconds) for the matrix-multiply kernel is ",t2-t1

C Solution B to Exercise (p. 6)

clock_t t1,t2;

double elapsed;

... MATRIX INITIALIZATION ...

t1=clock();

// Perform Matrix-Multiply Kernel

for(i = 0; i < n; i++)

for(j = 0; j < n; j++)

for(k = 0; k < n; k++)

c[i][j] = c[i][j] + a[i][k] * b[k][j];

t2=clock();

elapsed=t2-t1;

printf("The time (in seconds) for the matrix-multiply kernel is %f\n",elapsed/CLOCKS_PER_SEC);

Hint A to Exercise (p. 7)
Try to nest deeper the loop over I.
Solution B to Exercise (p. 7)

http://cnx.org/content/m32159/1.4/

Connexions module: m32159 9

! Perform the matrix-multiplication

do K=1,N

do J=1,N

do I=1,N

C(I,J)=C(I,J)+A(I,K)*B(K,J)

end do

end do

end do

Hint A to Exercise (p. 7)

Step 1. Unroll the outer loop I 4 times
Step 2. Initialize 4 accumulating variables at the start of inner loop J e.g. C0, C1, C2 and C3
Step 3. Within the inner-most loop K do the following:

i. Create a temporary variable equal to B(K,J)
ii. Replace the matrix-multiply statement with 4 separate accumulators

Step 4. After the inner-most loop is completed, update C with the accumulated totals.

Fortran90 Solution B to Exercise (p. 7)

! Perform the matrix-multiplication

do I=1,N,4

do J=1,N

C0=0.D0

C1=0.D0

C2=0.D0

C3=0.D0

do K=1,N

TEMP=B(K,J)

C0=C0+A(I,K)*TEMP

C1=C1+A(I+1,K)*TEMP

C2=C2+A(I+2,K)*TEMP

C3=C3+A(I+3,K)*TEMP

end do

C(I,J)=C(I,J)+C0

C(I+1,J)=C(I+1,J)+C1

C(I+2,J)=C(I+2,J)+C2

C(I+3,J)=C(I+3,J)+C3

end do

end do

C Solution C to Exercise (p. 7)

// Perform Matrix-Multiply Kernel

for(i = 0; i < n; i=i+4)

{

for(j = 0; j < n; j++)

{

http://cnx.org/content/m32159/1.4/

Connexions module: m32159 10

c0=0;

c1=0;

c2=0;

c3=0;

for(k = 0; k < n; k++)

{

temp=b[k][j];

c0=c0+a[i][k]*temp;

c1=c1+a[i+1][k]*temp;

c2=c2+a[i+2][k]*temp;

c3=c3+a[i+3][k]*temp;

}

c[i][j]=c[i][j]+c0;

c[i+1][j]=c[i+1][j]+c1;

c[i+2][j]=c[i+2][j]+c2;

c[i+3][j]=c[i+3][j]+c3;

}

}

Glossary

De�nition 1: Cache
Area of high-speed memory that contains recently referenced memory addresses.

De�nition 2: Column-Major Ordering
Array elements are stored in memory as contiguous columns in the matrix. For best performance
(and optimal cache use) elements should be traversed in column order.

Figure 3: Column-Major Ordering

De�nition 3: Dot Product
Also known as the scalar product, it is an operation which takes two vectors over the real numbers
R and returns a real-valued scalar quantity. It is the standard inner product of the orthonormal
Euclidean space.

De�nition 4: Hotspot
A block of source code instructions that account for a signi�cant amount of the CPU execution
time.

De�nition 5: Kernel
A block of source code instructions that represent a particular algorithm or calculation.

De�nition 6: omp_get_wtime()

http://cnx.org/content/m32159/1.4/

Connexions module: m32159 11

use omp_lib

DOUBLE PRECISION START, END

START = omp_get_wtime()

! ...HEAVY COMPUTATION...

END = omp_get_wtime()

PRINT *, 'That took ', &

(END - START), ' seconds.'

De�nition 7: Compiler Optimizations
Transformations to the source code which are applied by the compiler to improve the runtime
performance of the executing code e.g. loop unrolling, instruction reordering, in-lining etc.

De�nition 8: Real Time
The elapsed time between the invocation of a program and its termination.

De�nition 9: Row-Major Ordering
Array elements are stored in memory as contiguous rows in the matrix. For best performance (and
optimal cache use) elements should be traversed in row order.

Figure 4: Row-Major Ordering

http://cnx.org/content/m32159/1.4/

