
Connexions module: m32206 1

Objects and Object-Orientated

Programming
∗

Neels van der Westhuizen

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

1 Objects and Object-oriented Programming

Programs must be designed. No one can just sit down at the computer and compose a program of any
complexity. The discipline called software engineering is concerned with the construction of correct, working,
well-written programs. The software engineer tends to use accepted and proven methods for analyzing the
problem to be solved and for designing a program to solve that problem.

During the 1970s and into the 80s, the primary software engineering methodology was structured pro-
gramming. The structured programming approach to program design was based on the following advice: To
solve a large problem, break the problem into several pieces and work on each piece separately; to solve each
piece, treat it as a new problem which can itself be broken down into smaller problems; eventually, you will
work your way down to problems that can be solved directly, without further decomposition. This approach
is called top-down programming.

There is nothing wrong with top-down programming. It is a valuable and often-used approach to problem-
solving. However, it is incomplete. For one thing, it deals almost entirely with producing the instructions
necessary to solve a problem. But as time went on, people realized that the design of the data structures
for a program was as least as important as the design of subroutines and control structures. Top-down
programming doesn't give adequate consideration to the data that the program manipulates.

Another problem with strict top-down programming is that it makes it di�cult to reuse work done for
other projects. By starting with a particular problem and subdividing it into convenient pieces, top-down
programming tends to produce a design that is unique to that problem. It is unlikely that you will be able
to take a large chunk of programming from another program and �t it into your project, at least not without
extensive modi�cation. Producing high-quality programs is di�cult and expensive, so programmers and the
people who employ them are always eager to reuse past work.

∗ ∗ ∗
So, in practice, top-down design is often combined with bottom-up design. In bottom-up design, the

approach is to start �at the bottom,� with problems that you already know how to solve (and for which you
might already have a reusable software component at hand). From there, you can work upwards towards
a solution to the overall problem. The reusable components should be as �modular� as possible. Amodule
is a component of a larger system that interacts with the rest of the system in a simple, well-de�ned,
straightforward manner. The idea is that a module can be �plugged into� a system. The details of what goes
on inside the module are not important to the system as a whole, as long as the module ful�lls its assigned

∗Version 1.1: Oct 2, 2009 5:33 am -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m32206/1.1/



Connexions module: m32206 2

role correctly. This is called information hiding, and it is one of the most important principles of software
engineering.

One common format for software modules is to contain some data, along with some sub-routines for
manipulating that data. For example, a mailing-list module might contain a list of names and addresses
along with a subroutine for adding a new name, a subroutine for printing mailing labels, and so forth. In
such modules, the data itself is often hidden inside the module; a program that uses the module can then
manipulate the data only indirectly, by calling the subroutines provided by the module. This protects the
data, since it can only be manipulated in known, well-de�ned ways. And it makes it easier for programs to
use the module, since they don't have to worry about the details of how the data is represented. Information
about the representation of the data is hidden.

Modules that could support this kind of information-hiding became common in programming languages
in the early 1980s. Since then, a more advanced form of the same idea has more or less taken over software
engineering. This latest approach is called object-oriented programming, often abbreviated as OOP.

The central concept of object-oriented programming is the object , which is a kind of module containing
data and subroutines. The point-of-view in OOP is that an object is a kind of self-su�cient entity that has
an internal state (the data it contains) and that can respond to messages (calls to its subroutines). A mailing
list object, for example, has a state consisting of a list of names and addresses. If you send it a message
telling it to add a name, it will respond by modifying its state to re�ect the change. If you send it a message
telling it to print itself, it will respond by printing out its list of names and addresses.

The OOP approach to software engineering is to start by identifying the objects involved in a problem
and the messages that those objects should respond to. The program that results is a collection of objects,
each with its own data and its own set of responsibilities. The objects interact by sending messages to each
other. There is not much �top-down� in such a program, and people used to more traditional programs can
have a hard time getting used to OOP. However, people who use OOP would claim that object-oriented
programs tend to be better models of the way the world itself works, and that they are therefore easier to
write, easier to understand, and more likely to be correct.

∗ ∗ ∗
You should think of objects as �knowing� how to respond to certain messages. Di�erent objects might

respond to the same message in di�erent ways. For example, a �print� message would produce very di�erent
results, depending on the object it is sent to. This property of objects�that di�erent objects can respond
to the same message in di�erent ways�is called polymorphism.

It is common for objects to bear a kind of �family resemblance� to one another. Objects that contain the
same type of data and that respond to the same messages in the same way belong to the same class. (In
actual programming, the class is primary; that is, a class is created and then one or more objects are created
using that class as a template.) But objects can be similar without being in exactly the same class.

For example, consider a drawing program that lets the user draw lines, rectangles, ovals, polygons, and
curves on the screen. In the program, each visible object on the screen could be represented by a software
object in the program. There would be �ve classes of objects in the program, one for each type of visible
object that can be drawn. All the lines would belong to one class, all the rectangles to another class, and so
on. These classes are obviously related; all of them represent �drawable objects.� They would, for example,
all presumably be able to respond to a �draw yourself� message. Another level of grouping, based on the
data needed to represent each type of object, is less obvious, but would be very useful in a program:

We can group polygons and curves together as �multipoint objects,� while lines, rectangles, and ovals are
�two-point objects.� (A line is determined by its endpoints, a rectangle by two of its corners, and an oval by
two corners of the rectangle that contains it.) We could diagram these relationships as follows:

http://cnx.org/content/m32206/1.1/



Connexions module: m32206 3

Figure 1

DrawableObject, MultipointObject and TwoPointObject would be classes in the program. MultipointO-
bject and TwoPointObject would be subclasses of DrawableObject. The class Line would be a subclass of
TwoPointObject and (indirectly) of DrawableObject. A subclass of a class is said to inherit the properties
of that class. The subclass can add to its inheritance and it can even �override� part of that inheritance
(by de�ning a di�erent response to some method). Nevertheless, lines, rectangles, and so on are drawable
objects, and the class DrawableObject expresses this relationship.

Inheritance is a powerful means for organizing a program. It is also related to the problem of reusing
software components. A class is the ultimate reusable component. Not only can it be reused directly if it
�ts exactly into a program you are trying to write, but if it just almost �ts, you can still reuse it by de�ning
a subclass and making only the small changes necessary to adapt it exactly to your needs.

So, OOP is meant to be both a superior program-development tool and a partial solution to the software
reuse problem. Objects, classes, and object-oriented programming will be important themes throughout the
rest of this text.

http://cnx.org/content/m32206/1.1/


