Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » High Performance Computing » Closing Notes

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Endorsed by Endorsed (What does "Endorsed by" mean?)

This content has been endorsed by the organizations listed. Click each link for a list of all content endorsed by the organization.
  • HPC Open Edu Cup

    This collection is included inLens: High Performance Computing Open Education Cup 2008-2009
    By: Ken Kennedy Institute for Information Technology

    Click the "HPC Open Edu Cup" link to see all content they endorse.

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • NSF Partnership display tagshide tags

    This collection is included inLens: NSF Partnership in Signal Processing
    By: Sidney Burrus

    Click the "NSF Partnership" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Featured Content

    This collection is included inLens: Connexions Featured Content
    By: Connexions

    Comments:

    "The purpose of Chuck Severence's book, High Performance Computing has always been to teach new programmers and scientists about the basics of High Performance Computing. This book is for learners […]"

    Click the "Featured Content" link to see all content affiliated with them.

Also in these lenses

  • UniqU content

    This collection is included inLens: UniqU's lens
    By: UniqU, LLC

    Click the "UniqU content" link to see all content selected in this lens.

  • Lens for Engineering

    This module and collection are included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

  • eScience, eResearch and Computational Problem Solving

    This collection is included inLens: eScience, eResearch and Computational Problem Solving
    By: Jan E. Odegard

    Click the "eScience, eResearch and Computational Problem Solving" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Closing Notes

Module by: Charles Severance, Kevin Dowd. E-mail the authors

While this is a relatively long chapter with a lot of technical detail, it does not even begin to scratch the surface of the IEEE floating-point format or the entire field of numerical analysis. We as programmers must be careful about the accuracy of our programs, lest the results become meaningless. Here are a few basic rules to get you started:

  • Look for compiler options that relax or enforce strict IEEE compliance and choose the appropriate option for your program. You may even want to change these options for different portions of your program.
  • Use REAL*8 for computations unless you are sure REAL*4 has sufficient precision. Given that REAL*4 has roughly 7 digits of precision, if the bottom digits become meaningless due to rounding and computations, you are in some danger of seeing the effect of the errors in your results. REAL*8 with 13 digits makes this much less likely to happen.
  • Be aware of the relative magnitude of numbers when you are performing additions.
  • When summing up numbers, if there is a wide range, sum from smallest to largest.
  • Perform multiplications before divisions whenever possible.
  • When performing a comparison with a computed value, check to see if the values are “close” rather than identical.
  • Make sure that you are not performing any unnecessary type conversions during the critical portions of your code.

An excellent reference on floating-point issues and the IEEE format is “What Every Computer Scientist Should Know About Floating-Point Arithmetic,” written by David Goldberg, in ACM Computing Surveys magazine (March 1991). This article gives examples of the most common problems with floating-point and outlines the solutions. It also covers the IEEE floating-point format very thoroughly. I also recommend you consult Dr. William Kahan’s home page (http://www.cs.berkeley.edu/~wkahan/) for some excellent materials on the IEEE format and challenges using floating-point arithmetic. Dr. Kahan was one of the original designers of the Intel i8087 and the IEEE 754 floating-point format.

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks