
Connexions module: m32770 1

Floating-Point Numbers - History of

IEEE Floating-Point Format
∗

Charles Severance

Kevin Dowd

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License 3.0†

1 History of IEEE Floating-Point Format

Prior to the RISC microprocessor revolution, each vendor had their own �oating- point formats based on
their designers' views of the relative importance of range versus accuracy and speed versus accuracy. It was
not uncommon for one vendor to carefully analyze the limitations of another vendor's �oating-point format
and use this information to convince users that theirs was the only �accurate� �oating- point implementation.
In reality none of the formats was perfect. The formats were simply imperfect in di�erent ways.

During the 1980s the Institute for Electrical and Electronics Engineers (IEEE) produced a standard for
the �oating-point format. The title of the standard is �IEEE 754-1985 Standard for Binary Floating-Point
Arithmetic.� This standard provided the precise de�nition of a �oating-point format and described the
operations on �oating-point values.

Because IEEE 754 was developed after a variety of �oating-point formats had been in use for quite some
time, the IEEE 754 working group had the bene�t of examining the existing �oating-point designs and
taking the strong points, and avoiding the mistakes in existing designs. The IEEE 754 speci�cation had
its beginnings in the design of the Intel i8087 �oating-point coprocessor. The i8087 �oating-point format
improved on the DEC VAX �oating-point format by adding a number of signi�cant features.

The near universal adoption of IEEE 754 �oating-point format has occurred over a 10-year time period.
The high performance computing vendors of the mid 1980s (Cray IBM, DEC, and Control Data) had their
own proprietary �oating-point formats that they had to continue supporting because of their installed user
base. They really had no choice but to continue to support their existing formats. In the mid to late
1980s the primary systems that supported the IEEE format were RISC workstations and some coprocessors
for microprocessors. Because the designers of these systems had no need to protect a proprietary �oating-
point format, they readily adopted the IEEE format. As RISC processors moved from general-purpose
integer computing to high performance �oating-point computing, the CPU designers found ways to make
IEEE �oating-point operations operate very quickly. In 10 years, the IEEE 754 has gone from a standard
for �oating-point coprocessors to the dominant �oating-point standard for all computers. Because of this
standard, we, the users, are the bene�ciaries of a portable �oating-point environment.

2 IEEE Floating-Point Standard

The IEEE 754 standard speci�ed a number of di�erent details of �oating-point operations, including:

∗Version 1.3: Aug 25, 2010 10:29 am -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m32770/1.3/



Connexions module: m32770 2

• Storage formats
• Precise speci�cations of the results of operations
• Special values
• Speci�ed runtime behavior on illegal operations

Specifying the �oating-point format to this level of detail insures that when a computer system is compliant
with the standard, users can expect repeatable execution from one hardware platform to another when
operations are executed in the same order.

3 IEEE Storage Format

The two most common IEEE �oating-point formats in use are 32- and 64-bit numbers. Table 1: Parameters
of IEEE 32- and 64-Bit Formats gives the general parameters of these data types.

Parameters of IEEE 32- and 64-Bit Formats

IEEE75 FORTRAN C Bits Exponent Bits Mantissa Bits

Single REAL*4 �oat 32 8 24

Double REAL*8 double 64 11 53

Double-Extended REAL*10 long double >=80 >=15 >=64

Table 1

In FORTRAN, the 32-bit format is usually called REAL, and the 64-bit format is usually called DOUBLE.
However, some FORTRAN compilers double the sizes for these data types. For that reason, it is safest to
declare your FORTRAN variables as REAL*4 or REAL*8. The double-extended format is not as well supported
in compilers and hardware as the single- and double-precision formats. The bit arrangement for the single
and double formats are shown in Figure 1 (IEEE754 �oating-point formats).

Based on the storage layouts in Table 1: Parameters of IEEE 32- and 64-Bit Formats, we can derive the
ranges and accuracy of these formats, as shown in Table 2.

http://cnx.org/content/m32770/1.3/



Connexions module: m32770 3

IEEE754 �oating-point formats

Figure 1

IEEE754 Minimum Normalized Number Largest Finite Number Base-10 Accuracy

Single 1.2E-38 3.4 E+38 6-9 digits

Double 2.2E-308 1.8 E+308 15-17 digits

Extended Double 3.4E-4932 1.2 E+4932 18-21 digits

Table 2: Range and Accuracy of IEEE 32- and 64-Bit Formats

3.1 Converting from Base-10 to IEEE Internal Format

We now examine how a 32-bit �oating-point number is stored. The high-order bit is the sign of the number.
Numbers are stored in a sign-magnitude format (i.e., not 2's - complement). The exponent is stored in the
8-bit �eld biased by adding 127 to the exponent. This results in an exponent ranging from -126 through
+127.

The mantissa is converted into base-2 and normalized so that there is one nonzero digit to the left of
the binary place, adjusting the exponent as necessary. The digits to the right of the binary point are then
stored in the low-order 23 bits of the word. Because all numbers are normalized, there is no need to store
the leading 1.

This gives a free extra bit of precision. Because this bit is dropped, it's no longer proper to refer to the
stored value as the mantissa. In IEEE parlance, this mantissa minus its leading digit is called the signi�cand.

Figure 2 (Converting from base-10 to IEEE 32-bit format) shows an example conversion from base-10 to
IEEE 32-bit format.

http://cnx.org/content/m32770/1.3/



Connexions module: m32770 4

Converting from base-10 to IEEE 32-bit format

Figure 2

The 64-bit format is similar, except the exponent is 11 bits long, biased by adding 1023 to the exponent,
and the signi�cand is 54 bits long.

http://cnx.org/content/m32770/1.3/


