
Connexions module: m32784 1

Understanding Parallelism - Loops
∗

Charles Severance

Kevin Dowd

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License 3.0†

Loops are the center of activity for many applications, so there is often a high payback for simplifying
or moving calculations outside, into the computational suburbs. Early compilers for parallel architectures
used pattern matching to identify the bounds of their loops. This limitation meant that a hand-constructed
loop using if-statements and goto-statements would not be correctly identi�ed as a loop. Because modern
compilers use data �ow graphs, it's practical to identify loops as a particular subset of nodes in the �ow graph.
To a data �ow graph, a hand constructed loop looks the same as a compiler-generated loop. Optimizations
can therefore be applied to either type of loop.

Once we have identi�ed the loops, we can apply the same kinds of data-�ow analysis we applied above.
Among the things we are looking for are calculations that are unchanging within the loop and variables that
change in a predictable (linear) fashion from iteration to iteration.

How does the compiler identify a loop in the �ow graph? Fundamentally, two conditions have to be met:

• A given node has to dominate all other nodes within the suspected loop. This means that all paths to
any node in the loop have to pass through one particular node, the dominator. The dominator node
forms the header at the top of the loop.

• There has to be a cycle in the graph. Given a dominator, if we can �nd a path back to it from one of
the nodes it dominates, we have a loop. This path back is known as the back edge of the loop.

The �ow graph in Figure 1 (Flowgraph with a loop in it) contains one loop and one red herring. You can
see that node B dominates every node below it in the subset of the �ow graph. That satis�es Condition 1
(list, p. 1) and makes it a candidate for a loop header. There is a path from E to B, and B dominates E,
so that makes it a back edge, satisfying Condition 2 (list, p. 1). Therefore, the nodes B, C, D, and E form
a loop. The loop goes through an array of linked list start pointers and traverses the lists to determine the
total number of nodes in all lists. Letters to the extreme right correspond to the basic block numbers in the
�ow graph.

∗Version 1.3: Aug 25, 2010 11:20 am -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m32784/1.3/



Connexions module: m32784 2

Flowgraph with a loop in it

Figure 1

At �rst glance, it appears that the nodes C and D form a loop too. The problem is that C doesn't dominate
D (and vice versa), because entry to either can be made from B, so condition 1 (list, p. 1) isn't satis�ed.
Generally, the �ow graphs that come from code segments written with even the weakest appreciation for a
structured design o�er better loop candidates.

After identifying a loop, the compiler can concentrate on that portion of the �ow graph, looking for
instructions to remove or push to the outside. Certain types of subexpressions, such as those found in array
index expressions, can be simpli�ed if they change in a predictable fashion from one iteration to the next.

In the continuing quest for parallelism, loops are generally our best sources for large amounts of paral-
lelism. However, loops also provide new opportunities for those parallelism-killing dependencies.

http://cnx.org/content/m32784/1.3/


