
OpenStax-CNX module: m33672 1

What is High Performance

Computing - Why CISC?
∗

Charles Severance

Kevin Dowd

This work is produced by OpenStax-CNX and licensed under the

Creative Commons Attribution License 3.0†

You might ask, �If RISC is faster, why did people bother with CISC designs in the �rst place?� The
short answer is that in the beginning, CISC was the right way to go; RISC wasn't always both feasible and
a�ordable. Every kind of design incorporates trade-o�s, and over time, the best systems will make them
di�erently. In the past, the design variables favored CISC.

1 Space and Time

To start, we'll ask you how well you know the assembly language for your work- station. The answer is
probably that you haven't even seen it. Why bother? Compilers and development tools are very good, and if
you have a problem, you can debug it at the source level. However, 30 years ago, �respectable� programmers
understood the machine's instruction set. High-level language compilers were commonly available, but
they didn't generate the fastest code, and they weren't terribly thrifty with memory. When programming,
you needed to save both space and time, which meant you knew how to program in assembly language.
Accordingly, you could develop an opinion about the machine's instruction set. A good instruction set
was both easy to use and powerful. In many ways these qualities were the same: �powerful� instructions
accomplished a lot, and saved the programmer from specifying many little steps � which, in turn, made
them easy to use. But they had other, less apparent (though perhaps more important) features as well:
powerful instructions saved memory and time.

Back then, computers had very little storage by today's standards. An instruction that could roll all the
steps of a complex operation, such as a do-loop, into single opcode1 was a plus, because memory was precious.
To put some stakes in the ground, consider the last vacuum-tube computer that IBM built, the model 704
(1956). It had hardware �oating-point, including a division operation, index registers, and instructions that
could operate directly on memory locations. For instance, you could add two numbers together and store the
result back into memory with a single command. The Philco 2000, an early transistorized machine (1959),
had an operation that could repeat a sequence of instructions until the contents of a counter was decremented
to zero � very much like a do-loop. These were complex operations, even by today's standards. However,
both machines had a limited amount of memory � 32-K words. The less memory your program took up,
the more you had available for data, and the less likely that you would have to resort to overlaying portions
of the program on top of one another.

Complex instructions saved time, too. Almost every large computer following the IBM 704 had a memory
system that was slower than its central processing unit (CPU). When a single instruction can perform several

∗Version 1.3: Aug 25, 2010 11:24 am -0500
†http://creativecommons.org/licenses/by/3.0/
1Opcode = operation code = instruction.

http://cnx.org/content/m33672/1.3/

OpenStax-CNX module: m33672 2

operations, the overall number of instructions retrieved from memory can be reduced. Minimizing the number
of instructions was particularly important because, with few exceptions, the machines of the late 1950s were
very sequential; not until the current instruction was completed did the computer initiate the process of
going out to memory to get the next instruction.2 By contrast, modern machines form something of a
bucket brigade � passing instructions in from memory and �guring out what they do on the way � so there
are fewer gaps in processing.

If the designers of early machines had had very fast and abundant instruction memory, sophisticated
compilers, and the wherewithal to build the instruction �bucket brigade� � cheaply � they might have
chosen to create machines with simple instruction sets. At the time, however, technological choices indicated
that instructions should be powerful and thrifty with memory.

2 Beliefs About Complex Instruction Sets

So, given that the lot was cast in favor of complex instruction sets, computer architects had license to experi-
ment with matching them to the intended purposes of the machines. For instance, the do-loop instruction on
the Philco 2000 looked like a good companion for procedural languages like FORTRAN. Machine designers
assumed that compiler writers could generate object programs using these powerful machine instructions, or
possibly that the compiler could be eliminated, and that the machine could execute source code directly in
hardware.

You can imagine how these ideas set the tone for product marketing. Up until the early 1980s, it was
common practice to equate a bigger instruction set with a more powerful computer. When clock speeds
were increasing by multiples, no increase in instruction set complexity could fetter a new model of computer
enough so that there wasn't still a tremendous net increase in speed. CISC machines kept getting faster, in
spite of the increased operation complexity.

As it turned out, assembly language programmers used the complicated machine instructions, but com-
pilers generally did not. It was di�cult enough to get a compiler to recognize when a complicated instruction
could be used, but the real problem was one of optimizations: verbatim translation of source constructs isn't
very e�cient. An optimizing compiler works by simplifying and eliminating redundant computations. After
a pass through an optimizing compiler, opportunities to use the complicated instructions tend to disappear.

2In 1955, IBM began constructing a machine known as Stretch. It was the �rst computer to process several instructions
at a time in stages, so that they streamed in, rather than being fetched in a piece- meal fashion. The goal was to make it 25
times faster than the then brand-new IBM 704. It was six years before the �rst Stretch was delivered to Los Alamos National
Laboratory. It was indeed faster, but it was expensive to build. Eight were sold for a loss of $20 million.

http://cnx.org/content/m33672/1.3/

