Skip to content Skip to navigation

OpenStax-CNX

You are here: Home » Content » What a Compiler Does - Which Language To Optimize

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Endorsed by Endorsed (What does "Endorsed by" mean?)

This content has been endorsed by the organizations listed. Click each link for a list of all content endorsed by the organization.
  • HPC Open Edu Cup

    This module is included inLens: High Performance Computing Open Education Cup 2008-2009
    By: Ken Kennedy Institute for Information TechnologyAs a part of collection: "High Performance Computing"

    Click the "HPC Open Edu Cup" link to see all content they endorse.

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • NSF Partnership display tagshide tags

    This module is included inLens: NSF Partnership in Signal Processing
    By: Sidney BurrusAs a part of collection: "High Performance Computing"

    Click the "NSF Partnership" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Featured Content

    This module is included inLens: Connexions Featured Content
    By: ConnexionsAs a part of collection: "High Performance Computing"

    Comments:

    "The purpose of Chuck Severence's book, High Performance Computing has always been to teach new programmers and scientists about the basics of High Performance Computing. This book is for learners […]"

    Click the "Featured Content" link to see all content affiliated with them.

Also in these lenses

  • UniqU content

    This module is included inLens: UniqU's lens
    By: UniqU, LLCAs a part of collection: "High Performance Computing"

    Click the "UniqU content" link to see all content selected in this lens.

  • Lens for Engineering

    This module is included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

  • eScience, eResearch and Computational Problem Solving

    This module is included inLens: eScience, eResearch and Computational Problem Solving
    By: Jan E. OdegardAs a part of collection: "High Performance Computing"

    Click the "eScience, eResearch and Computational Problem Solving" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

What a Compiler Does - Which Language To Optimize

Module by: Charles Severance, Kevin Dowd. E-mail the authors

It has been said, “I don’t know what language they will be using to program high performance computers 10 years from now, but we do know it will be called FORTRAN.” At the risk of inciting outright warfare, we need to discuss the strengths and weaknesses of languages that are used for high performance computing. Most computer scientists (not computational scientists) train on a steady diet of C, C++,1 or some other language focused on data structures or objects. When students encounter high performance computing for the first time, there is an immediate desire to keep programming in their favorite language. However, to get the peak performance across a wide range of architectures, FORTRAN is the only practical language.

When students ask why this is, usually the first answer is, “Because it has always been that way.” In one way this is correct. Physicists, mechanical engineers, chemists, structural engineers, and meteorologists do most programming on high performance computers. FORTRAN is the language of those fields. (When was the last time a computer science student wrote a properly working program that computed for a week?) So naturally the high performance computer vendors put more effort into making FORTRAN work well on their architecture.

This is not the only reason that FORTRAN is a better language, however. There are some fundamental elements that make C, C++, or any data structures-oriented language unsuitable for high performance programming. In a word, that problem is pointers. Pointers (or addresses) are the way good computer scientists construct linked lists, binary trees, binomial queues, and all those nifty data structures. The problem with pointers is that the effect of a pointer operation is known only at execution time when the value of the pointer is loaded from memory. Once an optimizing compiler sees a pointer, all bets are off. It cannot make any assumptions about the effect of a pointer operation at compile time. It must generate conservative (less optimized) code that simply does exactly the same operation in machine code that the high-level language described.

While the lack of pointers in FORTRAN is a boon to optimization, it seriously limits the programmer’s ability to create data structures. In some applications, especially highly scalable network-based applications, the use of good data structures can significantly improve the overall performance of the application. To solve this, in the FORTRAN 90 specification, pointers have been added to FORTRAN. In some ways, this was an attempt by the FORTRAN community to keep programmers from beginning to use C in their applications for the data structure areas of their applications. If programmers begin to use pointers throughout their codes, their FORTRAN programs will suffer from the same problems that inhibit optimization in C programs. In a sense FORTRAN has given up its primary advantage over C by trying to be more like C. The debate over pointers is one reason that the adoption rate of FORTRAN 90 somewhat slowed. Many programmers prefer to do their data structure, communications, and other bookkeeping work in C, while doing the computations in FORTRAN 77.

FORTRAN 90 also has strengths and weaknesses when compared to FORTRAN 77 on high performance computing platforms. FORTRAN 90 has a strong advantage over FORTRAN 77 in the area of improved semantics that enable more opportunities for advanced optimizations. This advantage is especially true on distributed memory systems on which data decomposition is a significant factor. (See (Reference).) However, until FORTRAN 90 becomes popular, vendors won’t be motivated to squeeze the last bit of performance out of FORTRAN 90.

So while FORTRAN 77 continues to be the mainstream language for high performance computing for the near future, other languages, like C and FORTRAN 90, have their limited and potentially increasing roles to play. In some ways the strongest potential challenger to FORTRAN in the long run may come in the form of a numerical tool set such as Matlab. However, packages such as Matlab have their own set of optimization challenges that must be overcome before they topple FORTRAN 77’s domination.

Footnotes

  1. Just for the record, both the authors of this book are quite accomplished in C, C++, and FORTRAN, so they have no preconceived notions.

Content actions

Download module as:

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks