Skip to content Skip to navigation

OpenStax-CNX

You are here: Home » Content » What a Compiler Does - Introduction

Navigation

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Endorsed by Endorsed (What does "Endorsed by" mean?)

This content has been endorsed by the organizations listed. Click each link for a list of all content endorsed by the organization.
  • HPC Open Edu Cup

    This module is included inLens: High Performance Computing Open Education Cup 2008-2009
    By: Ken Kennedy Institute for Information TechnologyAs a part of collection: "High Performance Computing"

    Click the "HPC Open Edu Cup" link to see all content they endorse.

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • NSF Partnership display tagshide tags

    This module is included inLens: NSF Partnership in Signal Processing
    By: Sidney BurrusAs a part of collection: "High Performance Computing"

    Click the "NSF Partnership" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

  • Featured Content

    This module is included inLens: Connexions Featured Content
    By: ConnexionsAs a part of collection: "High Performance Computing"

    Comments:

    "The purpose of Chuck Severence's book, High Performance Computing has always been to teach new programmers and scientists about the basics of High Performance Computing. This book is for learners […]"

    Click the "Featured Content" link to see all content affiliated with them.

Also in these lenses

  • UniqU content

    This module is included inLens: UniqU's lens
    By: UniqU, LLCAs a part of collection: "High Performance Computing"

    Click the "UniqU content" link to see all content selected in this lens.

  • Lens for Engineering

    This module is included inLens: Lens for Engineering
    By: Sidney Burrus

    Click the "Lens for Engineering" link to see all content selected in this lens.

  • eScience, eResearch and Computational Problem Solving

    This module is included inLens: eScience, eResearch and Computational Problem Solving
    By: Jan E. OdegardAs a part of collection: "High Performance Computing"

    Click the "eScience, eResearch and Computational Problem Solving" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

What a Compiler Does - Introduction

Module by: Charles Severance, Kevin Dowd. E-mail the authors

What a Compiler Does

The goal of an optimizing compiler is the efficient translation of a higher-level language into the fastest possible machine language that accurately represents the high-level language source. What makes a representation good is: it gives the correct answers, and it executes quickly.

Naturally, it makes no difference how fast a program runs if it doesn’t produce the right answers.1 But given an expression of a program that executes correctly, an optimizing compiler looks for ways to streamline it. As a first cut, this usually means simplifying the code, throwing out extraneous instructions, and sharing intermediate results between statements. More advanced optimizations seek to restructure the program and may actually make the code grow in size, though the number of instructions executed will (hopefully) shrink.

When it comes to finally generating machine language, the compiler has to know about the registers and rules for issuing instructions. For performance, it needs to understand the costs of those instructions and the latencies of machine resources, such as the pipelines. This is especially true for processors that can execute more than one instruction at a time. It takes a balanced instruction mix — the right proportion of floating-point, fixed point, memory and branch operations, etc. — to keep the machine busy.

Initially compilers were tools that allowed us to write in something more readable than assembly language. Today they border on artificial intelligence as they take our high-level source code and translate it into highly optimized machine language across a wide variety of single- and multiple-processor architectures. In the area of high performance computing, the compiler at times has a greater impact on the performance of our program than either the processor or memory architecture. Throughout the history of high performance computing, if we are not satisfied with the performance of our program written in a high-level language, we will gladly rewrite all or part of the program in assembly language. Thankfully, today’s compilers usually make that step unnecessary.

In this chapter we cover the basic operation of optimizing compilers. In a later chapter we will cover the techniques used to analyze and compile programs for advanced architectures such as parallel or vector processing systems. We start our look at compilers examining how the relationship between programmers and their compilers has changed over time.

Footnotes

  1. However, you can sometimes trade accuracy for speed.

Content actions

Download module as:

Add module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks