
Connexions module: m33738 1

Loop Optimizations - Memory Access

Patterns
∗

Charles Severance

Kevin Dowd

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

The best pattern is the most straightforward: increasing and unit sequential. For an array with a single
dimension, stepping through one element at a time will accomplish this. For multiply-dimensioned arrays,
access is fastest if you iterate on the array subscript o�ering the smallest stride or step size. In FORTRAN
programs, this is the leftmost subscript; in C, it is the rightmost. The FORTRAN loop below has unit stride,
and therefore will run quickly:

DO J=1,N

DO I=1,N

A(I,J) = B(I,J) + C(I,J) * D

ENDDO

ENDDO

In contrast, the next loop is slower because its stride is N (which, we assume, is greater than 1). As N
increases from one to the length of the cache line (adjusting for the length of each element), the performance
worsens. Once N is longer than the length of the cache line (again adjusted for element size), the performance
won't decrease:

DO J=1,N

DO I=1,N

A(J,I) = B(J,I) + C(J,I) * D

ENDDO

ENDDO

Here's a unit-stride loop like the previous one, but written in C:

∗Version 1.3: Aug 25, 2010 11:02 am -0500
†http://creativecommons.org/licenses/by/3.0/

http://cnx.org/content/m33738/1.3/



Connexions module: m33738 2

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] = a[i][j] + c[i][j] * d;

Unit stride gives you the best performance because it conserves cache entries. Recall how a data cache
works.1 Your program makes a memory reference; if the data is in the cache, it gets returned immediately.
If not, your program su�ers a cache miss while a new cache line is fetched from main memory, replacing
an old one. The line holds the values taken from a handful of neighboring memory locations, including the
one that caused the cache miss. If you loaded a cache line, took one piece of data from it, and threw the
rest away, you would be wasting a lot of time and memory bandwidth. However, if you brought a line into
the cache and consumed everything in it, you would bene�t from a large number of memory references for a
small number of cache misses. This is exactly what you get when your program makes unit-stride memory
references.

The worst-case patterns are those that jump through memory, especially a large amount of memory, and
particularly those that do so without apparent rhyme or reason (viewed from the outside). On jobs that
operate on very large data structures, you pay a penalty not only for cache misses, but for TLB misses too.2

It would be nice to be able to rein these jobs in so that they make better use of memory. Of course, you
can't eliminate memory references; programs have to get to their data one way or another. The question is,
then: how can we restructure memory access patterns for the best performance?

In the next few sections, we are going to look at some tricks for restructuring loops with strided, albeit
predictable, access patterns. The tricks will be familiar; they are mostly loop optimizations from here3, used
here for di�erent reasons. The underlying goal is to minimize cache and TLB misses as much as possible.
You will see that we can do quite a lot, although some of this is going to be ugly.

1 Loop Interchange to Ease Memory Access Patterns

Loop interchange is a good technique for lessening the impact of strided memory references. Let's revisit
our FORTRAN loop with non-unit stride. The good news is that we can easily interchange the loops; each
iteration is independent of every other:

DO J=1,N

DO I=1,N

A(J,I) = B(J,I) + C(J,I) * D

ENDDO

ENDDO

After interchange, A, B, and C are referenced with the leftmost subscript varying most quickly. This modi�-
cation can make an important di�erence in performance. We traded three N-strided memory references for
unit strides:

1See (<http://cnx.org/content/m32733/latest/>).
2The Translation Lookaside Bu�er (TLB) is a cache of translations from virtual memory addresses to physical memory

addresses. For more information, refer back to (<http://cnx.org/content/m32733/latest/>).
3"Eliminating Clutter - Introduction" <http://cnx.org/content/m33720/latest/>

http://cnx.org/content/m33738/1.3/



Connexions module: m33738 3

DO I=1,N

DO J=1,N

A(J,I) = B(J,I) + C(J,I) * D

ENDDO

ENDDO

2 Matrix Multiplication

Matrix multiplication is a common operation we can use to explore the options that are available in optimizing
a loop nest. A programmer who has just �nished reading a linear algebra textbook would probably write
matrix multiply as it appears in the example below:

DO I=1,N

DO J=1,N

SUM = 0

DO K=1,N

SUM = SUM + A(I,K) * B(K,J)

ENDDO

C(I,J) = SUM

ENDDO

ENDDO

The problem with this loop is that the A(I,K) will be non-unit stride. Each iteration in the inner loop
consists of two loads (one non-unit stride), a multiplication, and an addition.

Given the nature of the matrix multiplication, it might appear that you can't eliminate the non-unit
stride. However, with a simple rewrite of the loops all the memory accesses can be made unit stride:

DO J=1,N

DO I=1,N

C(I,J) = 0.0

ENDDO

ENDDO

DO K=1,N

DO J=1,N

SCALE = B(K,J)

DO I=1,N

C(I,J) = C(I,J) + A(I,K) * SCALE

ENDDO

ENDDO

ENDDO

http://cnx.org/content/m33738/1.3/



Connexions module: m33738 4

Now, the inner loop accesses memory using unit stride. Each iteration performs two loads, one store, a
multiplication, and an addition. When comparing this to the previous loop, the non-unit stride loads have
been eliminated, but there is an additional store operation. Assuming that we are operating on a cache-based
system, and the matrix is larger than the cache, this extra store won't add much to the execution time. The
store is to the location in C(I,J) that was used in the load. In most cases, the store is to a line that is
already in the in the cache. The B(K,J) becomes a constant scaling factor within the inner loop.

http://cnx.org/content/m33738/1.3/


