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Hilbert Spaces in Signal Processing

Summary





 What makes Hilbert spaces so useful in signal processing? In modern signal processing, we often represent a signal as a point in
high-dimensional space. Hilbert spaces are spaces in which our geometry intuition from R3
       is most trustworthy. As an example, we will consider the approximation problem.
 
Definition 1.
A subset 
            W
          of a vector space 
            V
          is convex if for all 
            x,y ∈ W
          and 
            λ ∈ (0,1), 
            λ
            x + (1 – λ)y ∈ W
         .
 Theorem 1. The Fundamental Theorem of Approximation

       
      
 
Let 
               A
             be a nonempty, closed (complete), convex set in a Hilbert
space 
               H
            . For any 
               x ∈ H
             there is a unique point in 
               A
             that is closest to

               x
            , i.e., 
               x
             has a unique “best approximation” in 
               A
            .


   


 Figure 1. 
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The best approximation to 
            x
          in convex set 
            A
         .



 Note that in non-Hilbert spaces, this may not be true! The proof is rather technical. See Young Chapter 3 or Moon and Stirling Chapter 2. Also known as the “closest point property”, this is very useful in compression and denoising.
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