

 [image: Events, Triggers, and Effects]

 Events, Triggers, and Effects
By: Richard Baldwin
Online: <http://cnx.org/content/m34456/1.1/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2010/05/20

Events, Triggers, and Effects
By: Richard Baldwin
Online: <http://cnx.org/content/m34456/1.1/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2010/05/20

Events, Triggers, and Effects

Click

Effects04

Effects05

(Click the "Back" button in your browser
to return to this page.)

1.
Table of Contents

 	

Preface

	

 	

General

	

Viewing tip

		

 	

Figures

	

Listings

	

Supplemental material

	

General background
	information

	

Preview

	

Discussion and sample
	code

 	

The program named Effects04

	

The program named Effects05

	

	

Run the programs

	

Resources

	

Complete program listings

	

Miscellaneous

2.

Preface

General

 	 All references to ActionScript in this lesson are references to
	 version 3 or later.

This tutorial lesson is part of a series of lessons dedicated to
object-oriented programming

(OOP)

 with ActionScript.

Several ways to create and launch ActionScript
programs

There are several ways to create and launch programs written in the
ActionScript programming language. Most of the lessons in this series will
use Adobe Flex as the launch pad for the sample ActionScript programs.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3.

(See

Baldwin's Flex programming
website

.)

 You should study that lesson before embarking on the
lessons in this series.

Some understanding of Flex MXML will be required

I also recommend that you study all of the lessons on

Baldwin's Flex programming
website

 in parallel with your study of these ActionScript lessons.
Eventually you will probably need to understand both ActionScript and Flex and
the relationships that exist between them in order to become a successful
ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use either ActionScript code or Flex MXML code to
achieve the same result. Insofar as this series of lessons is concerned,
the emphasis will be on ActionScript code even in those cases where Flex MXML
code may be a suitable alternative.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Program output at startup for
	Effects04.

	

Figure 2

. Program output after clicking the
	button.

	

Figure 3

. Program output at startup for
	Effects05.

	

Figure 4

.

 	Program output after clicking the bottom button.

	

Figure 5

.

 	The WipeRight effect.

	

Figure 6

.

 	The Rotate effect.

	

Figure 7

.

 	The Glow effect.

	

Figure 8

.

 	Three effects in parallel.

Listings

 	

Listing 1

. The MXML file used for both
	programs.

	

Listing 2

. Beginning of the Driver class for
	Effects04.

	

Listing 3

. Beginning of the constructor for
	Effects04.

	

Listing 4

. Configuring the Glow effect.

	

Listing 5

. Beginning of the Driver class for
	Effects05.

	

Listing 6

.

	Beginning of the constructor for the Effects05.

	

Listing 7

.

	Configure an Iris effect for the bottom button.

	

Listing 8

.

	Configure three different effects targeted to the bottom button.

	

Listing 9

.

	A click event handler on the bottom button.

	

Listing 10

.

	An EFFECT_END handler for the Iris effect.

	

Listing 11

.

	A click event handler for the top button.

	

Listing 12

.

	Beginning of the Show event handler registered on the bottom button.

	

Listing 13

.

	Code to play the Rotate effect.

	

Listing 14

.

	Code to play the Glow effect.

	

Listing 15

.

		Code to play three effects in parallel.

	

Listing 16

.
The
	MXML file used for both programs.

	

Listing 17

.
The
	Driver class for Effects04.

	

Listing 18

.
The
	Driver class for Effects05.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

3.

General background information

According to

Using Behaviors

,

"Behaviors let you add animation and motion to your application in
	response to user or programmatic action. For example, you can use behaviors
	to cause a dialog box to bounce slightly when it receives focus, or to
	slowly fade in when it becomes visible."

You program behaviors into your applications using MXML, ActionScript,
triggers, and effects.

According to

About
behaviors

,

"A behavior is a combination of a trigger paired with an effect. A
	trigger is an action, such as a mouse click on a component, a component
	getting focus, or a component becoming visible. An effect is a visible or
	audible change to the target component that occurs over a period of time,
	measured in milliseconds. Examples of effects are fading, resizing, or
	moving a component."

Triggers are not events

Triggers are caused by events, but triggers are different from events.
For example, the trigger named

mouseDownEffect

 results from the
occurrence of a

mouseDown

 event.

If an

Effect

 object, such as a

Glow

 effect has been associated with a

mouseDownEffect

 trigger for
a given target component, the

Glow

 effect will be played when the user
presses the mouse button while the mouse pointer is over the target component.
This will be true

regardless

 of whether or not a

mouseDown

 event listener
is registered on the component.

Thirteen standard triggers in Flex Builder 3

The

UIComponent

 class

lists thirteen

triggers

:

 	

addedEffect

 -
Triggering Event:

added.

	Played when the component is added as a child to a Container.

	

creationCompleteEffect

 -
Triggering Event:

creationComplete

Played when the component is created.

	

focusInEffect

 -
Triggering Event:

	focusIn

	Played when the component gains keyboard focus.

	

focusOutEffect

 -
Triggering Event:

focusOut

Played when the component loses keyboard focus.

	

hideEffect

 -
Triggering Event:
hide

	Played when the component becomes invisible.

	

mouseDownEffect

 -
Triggering Event:

mouseDown

Played when the user presses the mouse button while over the component.

	

mouseUpEffect

 -

	Triggering Event:

	mouseUp

	Played when the user releases the mouse button while over the component.

	

moveEffect

 -
Triggering Event:
move

Played when the component is moved.

	

removedEffect

 -
Triggering Event:

	removed

	Played when the component is removed from a Container.

	

resizeEffect

 -
Triggering Event:
resize

Played when the component is resized.

	

rollOutEffect

 -
Triggering Event:

	rollOut

	Played when the user rolls the mouse so it is no longer over the component.

	

rollOverEffect

 -
Triggering Event:

rollOver

Played when the user rolls the mouse over the component.

	

showEffect

 -
Triggering Event:
show

	Played when the component becomes visible.

Effects are subclasses of the Effect class

Effects are subclasses

 of the

Effect

class a couple of levels down the inheritance hierarchy. Flex Builder 3
provides a number of built-in effects including the following:

 	

	

	AnimateProperty

	

	

	Blur

	

	

	Dissolve

	

	

	Fade

	

	

	Glow

	

	

	Iris

	

	

	Move

	

	

	Pause

	

	

	Resize

	

	

	Rotate

	

	

	SoundEffect

	

	

	WipeDown

	

	

	WipeLeft

	

	

	WipeRight

	

	

	WipeUp

	

	

	Zoom

In addition, you can create your own effects.

One trigger, many effects

The same trigger can be used to trigger different types of effects. I
suppose that in theory, you could create a different behavior for all possible
combinations of the thirteen triggers and the sixteen different effects in the
two lists provided above. In addition, you can program for multiple
effects to play in response to a single trigger.

To use an effect...

By default, Flex components do not play an effect when a trigger occurs.
To configure a component to use an effect, you must associate an effect with a
trigger.

4.

Preview

Two ways to play effects

There are at least two different ways to cause an effect to be played on a
component in an ActionScript program. One way is to call the

setStyle

method on the component and associate an effect trigger with an effect.
With that approach, the effect will be played each time the effect trigger
fires.

The second way

The second way is to target an

Effect

 object to the component and then
call the

play

 method on the effect object. This approach doesn't
make explicit use of the effect trigger.

Two different programs

I will present and explain two different programs in this lesson. The
first program will illustrate the first approach described above. The
second program will illustrate and contrast the two approaches.

5.

Discussion and sample code

A simple MXML file

Both programs that I
will explain in this lesson are written almost entirely in ActionScript.
There is just enough MXML code to make it possible to launch the programs from a
browser window.

The MXML file is shown in Listing 1 and also in Listing 16.

Example 1.
 <?xml version="1.0" encoding="utf-8"?>

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

As you can see, this MXML file simply instantiates an object of the class
named

Driver

 in the

cc

 namespace. Beyond that, the entire
behavior of the program is controlled by ActionScript code.

The program named Effects04

Will explain in fragments

I will break the code for these two programs down and explain the code in
fragments. Complete listings for the

Driver

 classes for the two
programs are provided in Listing 17 and Listing 18 near the end of the lesson.

Program output at startup

You can

run

 this program online
to get a better feel for its behavior.
Figure 1 shows the program
output at startup.

 [image: Missing image]

Figure 1.

Program output at startup for Effects04.

Program output at startup for Effects04.

As you can see, the Flash Player output consists of a label and a button with
the text

"Click me and watch me glow"

.

Associate a trigger with an effect

This program associates a

mouseUpEffect

 trigger
with a
	

	Glow

 effect to cause the button to glow when the user releases the mouse
button while the mouse pointer is over the button.

Program output after clicking the button

Figure 2 shows the program output shortly after clicking the button.

 [image: Missing image]

Figure 2.

Program output after clicking the button.

Program output after clicking the button.

As promised, the button begins to glow red when the mouse button is released
while the mouse pointer is over the

Button

 component. The button
continues to glow for several seconds.

Beginning of the Driver class for Effects04

This program shows how to set the style on an object with a

mouseUpEffect

trigger and cause the object to glow. The entire program is written in the
class named

Driver

. Listing 2 shows the beginning of the

Driver

class.

Example 2.

package CustomClasses{

 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.effects.Glow;

 public class Driver extends VBox{
 //Instantiate and save references to all of the
 // objects needed by the program.
 private var title:Label = new Label();
 private var button:Button = new Button();
 private var glowEffect:Glow = new Glow();

You shouldn't find any surprises in Listing 2. I will simply highlight
the last statement that instantiates an object of the

Glow

 class.
Note also that the

Driver

 class extends the

VBox

 container.

Beginning of the constructor for Effects04

The constructor begins in Listing 3.

Example 3.
 public function Driver(){//constructor

 //Set title properties and add to the VBox.
 title.setStyle("color","0xFFFF00");
 title.setStyle("fontSize",14);
 title.text = "Demo mouseUpEffect trigger";
 addChild(title);

 button.label = "Click me and watch me glow.";
 addChild(button);

Once again, you shouldn't find anything new in Listing 3. This part of
the constructor simply creates the yellow text label and the button shown in
Figure 1 and adds them to the

VBox

.

Configuring the Glow effect

The first three statements in Listing 4 set property values on the

Glow

object that was instantiated in Listing 2.

Example 4.

 glowEffect.color = 0xFF0000;
 glowEffect.strength = 255;
 glowEffect.duration = 10000;

 button.setStyle("mouseUpEffect",glowEffect);

 } //end constructor
 //--//

 } //end class
} //end package

The strength property

The purpose of the three properties should be fairly obvious on the basis of
their names. However, here is what the documentation has to say about the

strength

 property:

"The strength of the imprint or spread.
	The higher the value, the more color is imprinted and the stronger the
	contrast between the glow and the background. Valid values are from 0 to
	255."

A maximum red glow for ten seconds

The code in Listing 4 sets the effect to glow red with the maximum allowable
strength and to continue to glow for ten seconds. If you

run

 the program, you will see
that the glow doesn't stay the same for ten seconds and then turn off.
Instead, it decays over time.

Associate the trigger and the effect

The statement that

begins with button.setStyle

 in Listing 4 is the

key statement

 in the
entire program. This statement associates the effect referenced by

glowEffect

 with a

mouseUpEffect

 trigger. Therefore, the effect
will be played each time the mouse button is released while the mouse pointer is
over the

Button

 component. In fact, it doesn't even matter if the
mouse pointer was over the

Button

 component when the mouse button was
pressed as long as it is over the

Button

 component when the mouse button
is released.

The end of the program

Listing 4 also signals the end of the program. Note that even though
the

mouseUpEffect

 trigger resulted from a

mouseUp

 event, an event
listener was not registered to listen for and to service the

mouseUp

event.

Three steps are
required

Generally speaking, three steps are required to implement this approach:

 	
Instantiate an object of the desired effect from the above
	

list

, or from a custom effect if you
	have one.

	
Set property values on the effect object to cause it to have the desired
	behavior as in Listing 4.

	
Call the

setStyle

 method to associate the effect with an effect
	trigger from the above

list

 as in Listing 4.

That is all that is required to play an effect when an effect trigger occurs.

The program named Effects05

Suppose you want to do something a little more creative, such as to cause the
effect that is played for a particular trigger to differ from one time to the
next depending on some condition in the program.

Or, perhaps you want to play an effect on a component completely independent
of triggers, such as when a player's score in a game reaches 10,000. I
will show you how to do those kinds of things in this program.

Program output at startup

The best thing that you could do at this point would be to

run

 the program online.
That way, you can interact with the program as you read the following.

Figure 3 shows the program output at startup.

 [image: Missing image]

Figure 3.

Program output at startup for Effects05.

Program output at startup for Effects05.

At this point, the output consists of one label and two buttons. The
top button is disabled and the bottom button is asking to be clicked in order to
be hidden.

Program output after clicking the bottom button

Figure 4 shows the program output after the bottom button from Figure 3 has
been clicked.

 [image: Missing image]

Figure 4.

Program output after clicking the bottom button.

Program output after clicking the bottom button.

Only the top button is showing

At this point, the bottom button in Figure 3 has been hidden and the top
button in Figure 3 has been enabled. From this point forward, the user
will alternate between clicking the top and bottom buttons.

Do it several times

You need to go through the sequence several times to experience the full
effect. Each time the
user clicks the top button, it becomes disabled and the bottom button becomes
visible. Each time the bottom button becomes visible, an effect is played.
Effects are played in the following sequence:

 	
A WipeRight effect.

	
A Rotate effect.

	
A Glow effect.

	
All three of the above in parallel.

The sequence repeats after the three effects are played in parallel.

The next four figures show screen shots of the effects listed above caught in
midstream.

The WipeRight effect

Figure 5 shows the restoration of the bottom button with a

WipeRight

effect. As you can see, only part of the button was visible when the
screen show was taken.

 [image: Missing image]

Figure 5.

The WipeRight effect.

The WipeRight effect.

The Rotate effect

Figure 6 shows the

Rotate

 effect caught in midstream.

 [image: Missing image]

Figure 6.

The Rotate effect.

The Rotate effect.

The bottom button rotates a full 360 degrees around its center point before
coming to rest in the position shown in Figure 3 with its label restored.

The Glow effect

Figure 7 shows the bottom button in the middle of a yellow glow effect.

 [image: Missing image]

Figure 7.

The Glow effect.

The Glow effect.

You are already familiar with this effect from the program named Effects04
that I explained earlier in this lesson.

Three effects in parallel

Figure 8 shows the three effects being played in parallel.

 [image: Missing image]

Figure 8.

Three effects in parallel.

Three effects in parallel.

In this case, the bottom button goes through an interesting gyration before
coming to rest in the position shown in Figure 3. Someone once said that a
picture is worth a thousand words. In this case, actually

running

 the program is worth a
thousand pictures.

Will explain in fragments

As before, I will explain this program in fragments. Aside from the
simple MXML file shown in Listing 16, this entire program is written in a class
named

Driver

. A complete listing of the

Driver

 class is
provided in Listing 18.

Two ways to play effects

As I explained

earlier

, there are at least two different ways to write ActionScript code to play
effects:

 	
Call the

setStyle

 method on the target component passing an
	effect trigger and an effect as parameters to the method as described
	

above

. You saw an example of this
	in the program named Effects04.

	
Create an

Effect

 object targeted to the component and call the

	play

 method on the object. This approach doesn't require an effect
	trigger.

I will illustrate both approaches in this program.

Beginning of the Driver class for Effects05

The driver class for the program named Effects05 begins in Listing 5.

Example 5.

package CustomClasses{
 import flash.events.MouseEvent;

 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.effects.Glow;
 import mx.effects.Iris;
 import mx.effects.Parallel;
 import mx.effects.Rotate;
 import mx.effects.WipeRight;
 import mx.events.EffectEvent;
 import mx.events.FlexEvent;

 public class Driver extends VBox{
 //Instantiate and save references to most of the
 // objects needed by the program.
 private var title:Label = new Label();
 private var btnA:Button = new Button();
 private var btnB:Button = new Button();

 private var irisEffect:Iris = new Iris();
 private var wipeEffect:WipeRight = new WipeRight();
 private var rotateEffect:Rotate = new Rotate();
 private var glowEffect:Glow = new Glow();

 private var effectCounter:uint = 0;

Instantiate four different Effect objects

The most interesting part of Listing 5 is the instantiation of four

different effect objects

:

 	

Iris

	

WipeRight

	

Rotate

	

Glow

The

Iris

 effect will be used along with the

setStyle

 method to
cause the bottom button in Figure 3 to play an

Iris

 effect each time it
is hidden.

The other three effects in the above list plus an object of the

Parallel

class will be used to apply one of four different effects to the bottom button
each time it is shown.

Beginning of the constructor for Effects05

The constructor for the

Driver

 class begins in Listing 6.

Example 6.
 public function Driver(){//constructor

 //Set title properties and add to the VBox.
 title.setStyle("color","0xFFFF00");
 title.setStyle("fontSize",14);
 title.text = "Demo two ways to play effects";
 addChild(title);

 //Put labels on the two buttons and disable one
 // of them.
 btnA.label = "Click me to show the other button.";
 btnB.label = "Click me to hide me.";
 btnA.enabled = false;//disable btnA at startup

 //Register click listeners on both buttons,
 // register a show listener on btnB, and add
 // them to the VBox.
 btnA.addEventListener(MouseEvent.CLICK,btnAhandler);
 btnB.addEventListener(MouseEvent.CLICK,btnBhandler);
 btnB.addEventListener(FlexEvent.SHOW,showHandler);
 addChild(btnA);
 addChild(btnB);

If you have been studying this series of lessons from the beginning, you
shouldn't find anything in Listing 6 that you don't understand.

Configure an Iris effect for the bottom button

Listing 7 configures an

Iris

 effect that will be played each time the
bottom button in Figure 3 is hidden.

Example 7.

 irisEffect.duration = 2000;
 irisEffect.addEventListener(
 EffectEvent.EFFECT_END,endEffectHandler);

 btnB.setStyle("hideEffect",irisEffect);

Note that the bottom button in Figure 3 is referred to by the variable named

btnB

 and the top button in Figure 3 is referred to by the variable named

btnA

.

The code in Listing 7 is essentially the same as the code that I explained in
the earlier program named Effects04.

Configure three different effects targeted to the bottom button

Listing 8 configures three different

Effect

 objects that will be
played individually and in combination when the bottom button in Figure 3 is
shown.

Example 8.
 //Configure a wipe effect that may be played
 // when btnB is shown.
 wipeEffect.target = btnB;
 wipeEffect.showTarget = true;
 wipeEffect.duration = 2000;

 //Configure a rotate effect that may be played
 // when btnB is shown.
 rotateEffect.target = btnB;
 rotateEffect.angleFrom = 0;
 rotateEffect.angleTo = 360;
 rotateEffect.duration = 2000;

 //Configure a glow effect that may be played
 // when btnB is shown.
 glowEffect.target = btnB;
 glowEffect.color = 0xFFFF00;
 glowEffect.duration = 4000;
 glowEffect.inner = true;
 glowEffect.strength = 255;

 } //end constructor

Different effects require different properties

The three

Effect

 objects were instantiated in Listing 5.
Different types of effects require that different types of properties be set.
However, one property that is common for all types of effects when using this
approach is to specify the target component on which the effect is to be played.

(Note that it isn't necessary to explicitly specify the target for the
	earlier approach shown in Listing 7. In that case, the target is the
	object on which the

setStyle

 method is called.)

I will leave it as an exercise for the student to go into the documentation
and gain an understanding of the behaviors imparted by the different property
values in Listing 8.

Listing 8 also signals the end of the constructor.

A click event handler on the bottom button

Let's begin by disposing of the code that is executed when the
bottom button is clicked. A click event handler was registered on the
bottom button

(

btnB

)

 in Listing 6. That event handler is
shown in Listing 9.

Example 9.

 private function btnBhandler(event:MouseEvent):void{
 btnB.visible = false;
 } //end btnBhandler

A hideEffect trigger

The method shown in Listing 9 is executed each time the user clicks the
bottom button. The method sets the

visible

 property of the bottom
button to false. This causes the bottom button to dispatch a

hide

event, which in turn results in a

hideEffect

 trigger. As you saw in
Listing 7, this causes the program to play an

Iris

 effect to hide the
button.

An EFFECT_END handler for the Iris effect

When the bottom button is showing, the top button is disabled.
Therefore, when the bottom button becomes hidden, the top button must be enabled
or there will be no way to show the bottom button again.

Listing 7 registers an event handler on the

Iris

 effect that is called
each time the effect finishes playing. That event handler is shown in
Listing 10.

Example 10.

 private function endEffectHandler(
 event:EffectEvent):void{
 btnA.enabled = true;
 } //end event handler

The code in this method sets the

enabled

 property of the top button to
true making it possible to click that button to show the bottom button again.

That takes care of the code associated with clicking the bottom button.

A click event handler for the top button

Listing 6 registered a

click

 event handler on the top button

(

btnA

)

.
That event handler is shown in Listing 11. This method is called each time
the top button is clicked while it is enabled.

Example 11.

 private function btnAhandler(event:MouseEvent):void{
 btnA.enabled = false;
 btnB.visible = true;
 } //end btnAhandler

The code in this method disables the top button and sets the

visible

property of the bottom button to true. This causes the bottom button to
dispatch a

show

 event.

A

show

 event handler was registered on the bottom button in Listing 6.

Beginning of the show event handler registered on the bottom button

That

show

 event handler begins in Listing 12.

Example 12.

 private function showHandler(event:FlexEvent):void{
 //Make certain that none of the effects are playing.
 wipeEffect.end();
 rotateEffect.end();
 glowEffect.end();

 //Select the effect or effects that will be
 // played.
 if(effectCounter == 0){
 wipeEffect.play();
 effectCounter++;//increment the effect counter.

This method is executed each time the

visible

 property of the bottom
button is changed from false to true. The transition of that property
value from false to true causes the bottom button to dispatch a

show

event.

Stop all effects that may be playing

Listing 12 begins by calling the

end

 method on three of the four

Effect

 objects that were instantiated in Listing 5. If one of those
effects is playing, calling the

 end

 method on the effect object causes
the Flash Player to jump immediately to the end.

Determine which effect to play

Then Listing 12 begins executing a long

if-else-if

 statement that
determines which effect to play based on the current value of the variable named

effectCounter

 that was declared and initialized to a value of zero in
Listing 5.

Four possibilities

Depending on the current value of that counter, the program will play one of
the following three effects or all three in parallel:

 	

WipeRight

	

Rotate

	

Glow

If the current value of the effect counter variable is 0, the last two
statements in Listing 12 are executed. Otherwise, control passes to the
test at the top of Listing 13.

Play the wipe effect and increment the counter

One of the statements in Listing 12 calls the

play

 method on the
effect object referred to by

wipeEffect

causing that effect to play. The last statement in Listing 12 increments
the effect counter by a value of one. Then control passes to the end of
the

showHandler

 method near the bottom of Listing 15.

Code to play the Rotate effect

If the value of the effect counter was 1 when control entered the

if-else-if

 statement in Listing 12, the last four statements in Listing 13
are executed. Otherwise, control passes to the top of Listing 14.

Example 13.
 }else if(effectCounter == 1){
 rotateEffect.originX = btnB.width/2;
 rotateEffect.originY = btnB.height/2;
 rotateEffect.play();
 effectCounter++;

If the value of the effect counter was 1 when the

if-else-if

 statement
began execution, the

play

 method is called on the

rotateEffect

object by the code in Listing 13.

Establish the center of rotation

Before calling the

play

 method, however, the code in Listing 13
establishes the center of the button as the point around which the button will
be rotated. It was not possible to establish this point when the

Rotate

effect was configured in Listing 8 because reliable information about the width
and height of the button was not yet available.

Could have used creationComplete

Perhaps a more elegant approach to establishing the center of rotation would
have been to register a

creationComplete

 listener on the

VBox

 and
to set the values for

originX

 in

originY

 in that handler.
However, that seemed like overkill and I decided to do it in Listing 13.

Increment the counter and go to the end of the
method

If the last four statements in Listing 13 are executed, the effect counter is
incremented by one. Then control passes to the bottom of the method in
Listing 15.

Code to play the Glow effect

If the value of the effect counter was 2 when control entered the

if-else-if

statement in Listing 12, the last two statements in Listing 14 are executed.
Otherwise, control passes to the top of Listing 15.

Example 14.
 }else if(effectCounter == 2){
 glowEffect.play();
 effectCounter++;

The last two statements in Listing 14 play the glow effect and increment the
effect counter. Then control passes to the bottom of the method in Listing
15.

Code to play three effects in parallel

If the value of the effect counter was something other than 0, 1, or 2 when
control entered the

if-else-if

 statement in Listing 12, the code in the

else

clause in Listing 15 is executed.

Example 15.
 }else{
 //Play all three effects in parallel.
 var parallel:Parallel = new Parallel();
 parallel.addChild(rotateEffect);
 parallel.addChild(glowEffect);
 parallel.addChild(wipeEffect);
 parallel.play();
 //reset the effect counter
 effectCounter = 0;
 } //end else

 } //end showHandler
 //--//

 } //end class
} //end package

An object of the Parallel class

This code instantiates an object of the

Parallel

 class and adds the
three effects as children of that object. Then the code calls the

play

method on the

Parallel

 object. This causes all three effects to
play simultaneously.

Reset the counter

Finally, Listing 15 resets the value of the effect counter back to 0 so that
the sequence will begin anew the next time the event handler for the

show

event is executed.

Play the same effect on multiple targets
simultaneously

You can play the same effect on multiple targets simultaneously by setting
the

targets

 property on the effect object instead of the

target

object. The

targets

 property requires an array containing
references to the target objects.

Three steps are required

The following steps are required to play an effect in the Flash Player using
this approach.

 	
Instantiate and save a reference to an

Effect

 object.

	
Set properties on the effect object. Be sure to set the

target

	property for a single target or the

targets

 property for multiple
	targets.

	
Call the

play

 method on the effect object.

To play multiple effects in parallel or in sequence

 	
Instantiate and save references to two or more

Effect

 objects.

	
Set properties on the effect objects, being careful to set either the

	target

 property or the

targets

 property.

	
Instantiate a

Parallel

 object or a

Sequence

 object.

	
Add the effect objects as children of the

Parallel

 object or the
	

Sequence

 object.

	
Call the play method on the

Parallel

 object or the

Sequence

	object.

Note that you can also add

Sequence

 objects to

Parallel

 objects
and vice versa. Just make certain that you don't try to play two instances
of the same effect on the same object at the same time.

The end of the program

Listing 15 also signals the end of the

Driver

 class and the end of the
program.

6.

Run the programs

I encourage you to

run

 these two programs from the
web. Then copy
 the code from Listing 16 through Listing 18.
Use that code to create Flex projects. Compile and run the projects.
Experiment with the code, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they
do.

7.

Resources

I will publish a list containing links to ActionScript resources as a separate document. Search for ActionScript Resources in the Connexions search box.

8.

Complete program listings

Complete listings of the MXML and ActionScript files are provided in Listing 16
through Listing 18 below.

Example 16.
 <?xml version="1.0" encoding="utf-8"?>

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

Example 17.
 /*Effects04 11/22/09
This program shows how to set the style on an object with
 a mouseUpEffect trigger and cause the object to glow.
*/

package CustomClasses{

 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.effects.Glow;

 public class Driver extends VBox{
 //Instantiate and save references to all of the
 // objects needed by the program.
 private var title:Label = new Label();
 private var button:Button = new Button();
 private var glowEffect:Glow = new Glow();
 //--//

 public function Driver(){//constructor

 //Set title properties and add to the VBox.
 title.setStyle("color","0xFFFF00");
 title.setStyle("fontSize",14);
 title.text = "Demo mouseUpEffect trigger";
 addChild(title);

 button.label = "Click me and watch me glow.";
 addChild(button);

 glowEffect.color = 0xFF0000;
 glowEffect.strength = 255;
 glowEffect.duration = 10000;
 button.setStyle("mouseUpEffect",glowEffect);

 } //end constructor
 //--//

 } //end class
} //end package

Example 18.
 /*Effects05 11/22/09
This program demonstrates two ways to play effects:
1. Call the play method on the effect.
2. Set the style on an object with a hideEffect trigger.
***/
package CustomClasses{
 import flash.events.MouseEvent;

 import mx.containers.VBox;
 import mx.controls.Button;
 import mx.controls.Label;
 import mx.effects.Glow;
 import mx.effects.Iris;
 import mx.effects.Parallel;
 import mx.effects.Rotate;
 import mx.effects.WipeRight;
 import mx.events.EffectEvent;
 import mx.events.FlexEvent;

 public class Driver extends VBox{
 //Instantiate and save references to most of the
 // objects needed by the program.
 private var title:Label = new Label();
 private var btnA:Button = new Button();
 private var btnB:Button = new Button();
 private var irisEffect:Iris = new Iris();
 private var wipeEffect:WipeRight = new WipeRight();
 private var rotateEffect:Rotate = new Rotate();
 private var glowEffect:Glow = new Glow();
 private var effectCounter:uint = 0;
 //--//

 public function Driver(){//constructor

 //Set title properties and add to the VBox.
 title.setStyle("color","0xFFFF00");
 title.setStyle("fontSize",14);
 title.text = "Demo two ways to play effects";
 addChild(title);

 //Put labels on the two buttons and disable one
 // of them.
 btnA.label = "Click me to show the other button.";
 btnB.label = "Click me to hide me.";
 btnA.enabled = false;//disable btnA at startup

 //Register click listeners on both buttons,
 // register a show listener on btnB, and add
 // them to the VBox.
 btnA.addEventListener(MouseEvent.CLICK,btnAhandler);
 btnB.addEventListener(MouseEvent.CLICK,btnBhandler);
 btnB.addEventListener(FlexEvent.SHOW,showHandler);
 addChild(btnA);
 addChild(btnB);

 //Configure an iris effect that will be played when
 // btnB is hidden.
 irisEffect.duration = 2000;
 irisEffect.addEventListener(
 EffectEvent.EFFECT_END,endEffectHandler);
 btnB.setStyle("hideEffect",irisEffect);

 //Configure a wipe effect that may be played
 // when btnB is shown.
 wipeEffect.target = btnB;
 wipeEffect.showTarget = true;
 wipeEffect.duration = 2000;

 //Configure a rotate effect that may be played
 // when btnB is shown.
 rotateEffect.target = btnB;
 rotateEffect.angleFrom = 0;
 rotateEffect.angleTo = 360;
 rotateEffect.duration = 2000;

 //Configure a glow effect that may be played
 // when btnB is shown.
 glowEffect.target = btnB;
 glowEffect.color = 0xFFFF00;
 glowEffect.duration = 4000;
 glowEffect.inner = true;
 glowEffect.strength = 255;

 } //end constructor
 //--//

 //This method is executed when btnB is clicked. It
 // hides itself, which in turn causes the Iris
 // hideEffect to be played on itself.
 private function btnBhandler(event:MouseEvent):void{
 btnB.visible = false;
 } //end btnBhandler
 //--//

 //This method is executed when btnA is clicked. It
 // disables itself and causes btnB to become visible.
 // This in turn causes btnB to dispatch a show event
 // which is handled by a different event handler.
 private function btnAhandler(event:MouseEvent):void{
 btnA.enabled = false;
 btnB.visible = true;
 } //end btnAhandler
 //--//

 //This method is executed when btnB is hidden and the
 // iris effect ends. It enables btnA so that the user
 // can click btnA to show btnB again.
 private function endEffectHandler(
 event:EffectEvent):void{
 btnA.enabled = true;
 } //end event handler
 //--//

 //This method is executed when btnB becomes visible
 // and dispatches a show event. It causes any effects
 // that may be playing to end. Then it one of three
 // effects or all three in parallel depending on the
 // value of an effect counter.
 private function showHandler(event:FlexEvent):void{
 //Make certain that none of the effects are playing.
 wipeEffect.end();
 rotateEffect.end();
 glowEffect.end();

 //Select the effect or effects that will be
 // played.
 if(effectCounter == 0){
 wipeEffect.play();
 effectCounter++;//increment the effect counter.
 }else if(effectCounter == 1){
 //Set the rotate origin to the center of the
 // button. This couldn't be done when the rotate
 // effect was configured because the true width
 // and height of the button weren't available at
 // that time. Another approach would be to use
 // a creationComplete event handler to set these
 // values.
 rotateEffect.originX = btnB.width/2;
 rotateEffect.originY = btnB.height/2;
 rotateEffect.play();
 effectCounter++;
 }else if(effectCounter == 2){
 glowEffect.play();
 effectCounter++;
 }else{
 //Play all three effects in parallel.
 var parallel:Parallel = new Parallel();
 parallel.addChild(rotateEffect);
 parallel.addChild(glowEffect);
 parallel.addChild(wipeEffect);
 parallel.play();
 effectCounter = 0;//reset the effect counter
 } //end else

 } //end showHandler
 //--//

 } //end class
} //end package

9.

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Events, Triggers, and Effects

	
Files:

 	
ActionScript0116\ActionScript0116.htm

	
ActionScript0116\Connexions\ActionScriptXhtml0116.htm

PDF disclaimer:

-end-

content/as0116c.jpg
/2 w:\Baldwin\AA-Schiooll ol x
) [@) mgatawinvan 7] 455

Fle Edt View Favortes Tools Help

\
Favorites @ M:\Baldwin\AA-School\JF

Demo two ways to play effects

Internet | Protect| -,

content/as0116e.jpg
/. M:\Baldwin\AA-School\JFE

@) m:Baldwin\aa v [+

File Edit View Favorites Tools Help

Favorites @ M:\Baldwin\AA-School JF

Demo two ways to play effects

(@ temet | Protect|, + | %75% v

content/as0116h.jpg
|2 i \Bawin) AA- SciooN IR [=I 1]
(o0 [@) magalwiman » ar

File Edit View Favorites Tools Help

Favorites (€3 w\Balduin Ak-SchoolF

Demo two ways to play effects

content/cover.png
Events, Triggers,
and Effects

content/as0116f.jpg
Help

Favorites @ M:\Baldwin\AA-School JF

@ wternet | protect| -, + | h75% v

content/as0116g.jpg
/2 m:\Baldwin\AA-Schooll ofx

- | @] mogaldwiniaa v | 14|

File Edit View Favories Tools Help

Favorites @ M:\Baldwin\AA-School JF

Demo two ways to play effects

Internet | Protect| -, v

content/as0116b.jpg
‘ S =lofx|
@] M:\Baldwin\aA v | | ¥3

CFle Edt View Favorttes Tools 17

. Favorites @ M:\Baldvin\A-Schaol

(@ mternet [Prot[5 < [R75% -

content/as0116a.jpg
: =10 x|
) @) magaldwiniaa v | | ¥5 |

CFle Edt View Favorites Tools 17

\Baldwin\AA-School

@ mternet [Prot| -, v [R75% v

content/as0116d.jpg
/2 w:\Baldwin\AA-Schiooll ol x
) [@) mgatawinvan 7] 455

Fle Edt View Favortes Tools Help

\
Favorites @ M:\Baldwin\AA-School\JF

Demo two ways to play effects

Internet | Protect| -,

