
OpenStax-CNX module: m34457 1

Creating Custom Effects
∗

R.G. (Dick) Baldwin

This work is produced by OpenStax-CNX and licensed under the

Creative Commons Attribution License 3.0†

Abstract

Learn how to create a custom e�ect and how to play it two di�erent ways.

note: Click CustomE�ect02 1 or CustomE�ect03 2 to run the ActionScript programs from this
lesson. (Click the "Back" button in your browser to return to this page.)

1 Table of Contents

• Preface (p. 2)

· General (p. 2)
· Viewing tip (p. 2)

* Figures (p. 2)
* Listings (p. 2)

· Supplemental material (p. 3)

• General background information (p. 3)
• Preview (p. 3)
• Discussion and sample code (p. 6)

· Creating a custom e�ect (p. 6)
· The class named CustomE�ect (p. 7)
· The class named CustomE�ectInstance (p. 10)
· The Driver class for the program named CustomE�ect02 (p. 13)
· The Driver class for the program named CustomE�ect03

• Run the program (p. 17)
• Resources (p. 17)
• Complete Program Listings (p. 17)
• Miscellaneous (p. 23)

∗Version 1.1: May 20, 2010 8:55 pm -0500
†http://creativecommons.org/licenses/by/3.0/
1http://cnx.org/content/m34457/latest/CustomE�ect02.html
2http://cnx.org/content/m34457/latest/CustomE�ect03.html

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 2

2 Preface

2.1 General

note: All references to ActionScript in this lesson are references to version 3 or later.

This tutorial lesson is part of a series of lessons dedicated to object-oriented programming (OOP) with
ActionScript.

Several ways to create and launch ActionScript programs
There are several ways to create and launch programs written in the ActionScript programming language.

Many of the lessons in this series will use Adobe Flex as the launch pad for the sample ActionScript programs.
An earlier lesson titled The Default Application Container provided information on how to get

started programming with Adobe's Flex Builder 3. (See Baldwin's Flex programming website 3 .) You
should study that lesson before embarking on the lessons in this series.

Some understanding of Flex MXML will be required
I also recommend that you study all of the lessons on Baldwin's Flex programming website in parallel

with your study of these ActionScript lessons. Eventually you will probably need to understand both Action-
Script and Flex and the relationships that exist between them in order to become a successful ActionScript
programmer.

Will emphasize ActionScript code
It is often possible to use either ActionScript code or Flex MXML code to achieve the same result. Insofar

as this series of lessons is concerned, the emphasis will be on ActionScript code even in those cases where
Flex MXML code may be a suitable alternative.

2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

2.2.1 Figures

• Figure 1 (p. 4) . Program output at startup.
• Figure 2 (p. 5) . CustomE�ect02 output after clicking a button.

2.2.2 Listings

• Listing 1 (p. 6) . Common MXML Code.
• Listing 2 (p. 7) . Beginning of the class named CustomE�ect.
• Listing 3 (p. 8) . The constructor for the class named CustomE�ect.
• Listing 4 (p. 8) . Override the initInstance method.
• Listing 5 (p. 9) . Override the getA�ectedProperties method.
• Listing 6 (p. 10) . Beginning of the CustomE�ectInstance class.
• Listing 7 (p. 10) . Declare variables for storage of e�ect properties.
• Listing 8 (p. 11) . The constructor for the CustomE�ectInstance class.
• Listing 9 (p. 11) . Override the inherited play method.
• Listing 10 (p. 12) . Play the three e�ects in parallel.
• Listing 11 (p. 13) . Beginning of the Driver class for CustomE�ect02.
• Listing 12 (p. 14) . Beginning of the constructor for the Driver class.
• Listing 13 (p. 14) . Set properties on the custom e�ect.
• Listing 14 (p. 15) . The common click event handler.
• Listing 15 (p. 15) . Beginning of the Driver class for CustomE�ect03.

3http://www.dickbaldwin.com/tocFlex.htm

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 3

• Listing 16 (p. 16) . Set properties on the custom e�ect.
• Listing 17 (p. 17) . Apply the e�ect to the two buttons individually.
• Listing 18 (p. 17) . Common MXML code used for both programs.
• Listing 19 (p. 18) . Source code for the class named CustomE�ect.
• Listing 20 (p. 19) . Source code for the class named CustomE�ectInstance.
• Listing 21 (p. 20) . Driver class for the program named CustomE�ect02.
• Listing 22 (p. 22) . Driver class for the program named CustomE�ect03.

2.3 Supplemental material

I recommend that you also study the other lessons in my extensive collection of online programming tutorials.
You will �nd a consolidated index at www.DickBaldwin.com 4 .

3 General background information

In an earlier lesson titled Events, Triggers, and E�ects , I taught you how to use the triggers and
e�ects that are built into the ActionScript language.

In this lesson, I will teach you how to create your own custom e�ects. I will also explain two di�erent
programs that use a custom e�ect of my own design. I recommend that you run (p. 1) the online version of
each of the two programs before continuing with the lesson.

4 Preview

Program output at startup
Figure 1 shows the screen output of both programs at startup.

4http://www.dickbaldwin.com/toc.htm

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 4

Program output at startup.

Figure 1: Program output at startup.

A common custom e�ect
Both programs apply the same custom e�ect to both buttons. However, the program named Custom-

E�ect02 applies the e�ect in such a way that it is played on both buttons simultaneously if either button
is clicked. The program named CustomE�ect03 applies the custom e�ect in such a way that it plays
individually on each button when the button is clicked. I will explain the reason for this di�erence later.

One run is worth a thousand pictures
Hopefully by now you have been able to run (p. 1) the online version of both programs because the

e�ect is di�cult to explain. Basically, the custom e�ect consists of the parallel execution of three types of
standard ActionScript e�ects:

• WipeRight

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 5

• Glow
• Rotate

The e�ect appears to cause the buttons to leave their positions, change color, and �y around for a short
while before settling back into their normal positions.

CustomE�ect02 output after clicking a button
Figure 2 shows the output from the program named CustomE�ect02 shortly after clicking one of the

buttons.

CustomE�ect02 output after clicking a button.

Figure 2: CustomE�ect02 output after clicking a button.

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 6

5 Discussion and sample code

Will discuss in fragments
I will discuss and explain these two programs in fragments. Complete listings of the MXML code and

the ActionScript code are provided near the end of the lesson beginning with Listing 18.
The MXML �les
Both programs use the same simple MXML code shown in Listing 1.

Listing 1: Common MXML Code.

<?xml version="1.0" encoding="utf-8"?>

<!--CustomEffect02 11/26/09

Illustrates a custom effect, which is the parallel

playing of three standard effects:

WipeRight

Rotate

Glow

The effect is applied to two buttons each time either

button is clicked.

This version sets the targets on the effect and calls the

play method on the effect.

See the Flex 3 Cookbook, page 363

Also see http://livedocs.adobe.com/flex/3/html/help.html?

content=createeffects_2.html#178126

Also see http://livedocs.adobe.com/flex/3/html/help.html?

content=behaviors_04.html#275399

-->

<mx:Application

xmlns:mx="http://www.adobe.com/2006/mxml"

xmlns:cc="CustomClasses.*">

<cc:Driver/>

</mx:Application>

An object of the class named Driver
As you can see, this MXML �le simply instantiates an object of the class named Driver . That's

because almost all of the code in these two programs is written in ActionScript instead of MXML.

5.1 Creating a custom e�ect

You must de�ne two classes to create a custom e�ect. One class is a factory class that extends the class
named E�ect . The other class is an instance class that extends the class named E�ectInstance .

The instance class plays the e�ect

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 7

When the time comes to play the e�ect on a component, the factory class instantiates an object of the
instance class to actually play the e�ect. If the same e�ect is played on two or more components at the same
time, a di�erent object of the instance class is instantiated to play the e�ect on each component.

Play three e�ects in parallel
As explained in Listing 1, the custom class that I designed for use in this lesson plays the following three

e�ects in parallel:

• WipeRight
• Rotate
• Glow

You learned about something similar to this in my earlier lesson titled Events, Triggers, and E�ects .
However, in that lesson I didn't combine the three e�ects into a single custom e�ect the way that I will in
this lesson.

Knowledge of OOP is required
I will do the best that I can to explain this code. Even at that, you are likely to need a pretty good

understanding of object-oriented programming to understand the code required to create a custom e�ect. As
you will see later, the required code is steeped in overridden methods, interfaces, and other object-oriented
concepts.

5.2 The class named CustomE�ect

The class named CustomE�ect begins in Listing 2. A complete listing of the class is provided in Listing
19 near the end of the lesson.

Listing 2: Beginning of the class named CustomE�ect.

package CustomClasses{

import mx.effects.Effect;

import mx.effects.IEffectInstance;

import mx.events.EffectEvent;

public class CustomEffect extends Effect{

//Would prefer to make these private and use implicit

// setter methods, but I decided to leave them public

// to simplify the code.

public var theDuration:Number = 2000;//default value

public var rotateAngleFrom:Number = 0;//default value

public var rotateAngleTo:Number = 360;//default value

public var wipeShowTarget:Boolean = true;//default

public var glowColor:uint = 0xFF0000;//default value

public var glowInner:Boolean = true;//default value

public var glowStrength:Number = 255;//default value

The factory class
Of the two required classes, this is the factory class that I mentioned earlier. This class must extend the

class named E�ect , and will override methods inherited from that class.
Public instance variables
Listing 2 declares and initializes seven public instance variables that will be used to set properties on

the WipeRight object, the Rotate object, and the Glow object. I provided default values for these
variables so that the program will work even if the driver program fails to provide the required values.

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 8

Could use implicit setter methods
As I mentioned in the comments, I would prefer to make these variables private and provide an implicit

setter method for each variable. However, I decided to make them public to simplify the code and make it
easier to explain.

The constructor for the class named CustomE�ect
The constructor is shown in its entirety in Listing 3.

Listing 3: The constructor for the class named CustomE�ect.

public function CustomEffect(target:Object=null){

super(target);

instanceClass = CustomEffectInstance;

} //end constructor

The incoming parameter
The incoming parameter for the constructor is the generic type Object . This parameter must specify

the component on which the e�ect is to be played.
If no target is passed as a parameter to the constructor, the default null value prevails and the target

property of the object must be set. As you will see later, an alternative property named targets can be
set to cause the e�ect to be played on multiple targets at the same time.

Call the superclass constructor
Without attempting to explain why, I am going to tell you that it is frequently necessary in OOP to

cause the constructor for a class to make a call to the constructor of its superclass as the �rst statement in
the constructor. This constructor is no exception to that rule.

The �rst statement in Listing 3 is a call to the constructor for the E�ect class passing a reference to
the target component(s) as a parameter. When that constructor returns control, the second statement in
Listing 3 is executed.

The instanceClass property
This class inherits a property named instanceClass from the class named E�ect . According to

About creating a custom e�ect 5 , the factory class that you de�ne must set the value of this property to
the name of the instance class that will be used to play the e�ect.

In this program, the name of the instance class is CustomE�ectInstance , as shown in Listing 3. I
will explain the code in that class after I �nish explaining the code in this class.

This inherited property provides the mechanism that ties the instance class to the factory class.
Override the initInstance method
Listing 4 overrides an inherited method named initInstance .

Listing 4: Override the initInstance method.

override protected function initInstance(

instance:IEffectInstance):void{

super.initInstance(instance);

CustomEffectInstance(instance).theDuration =

this.theDuration;

CustomEffectInstance(instance).rotateAngleFrom =

this.rotateAngleFrom;

CustomEffectInstance(instance).rotateAngleTo =

this.rotateAngleTo;

5http://livedocs.adobe.com/�ex/3/html/help.html?content=createe�ects_2.html#178126

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 9

CustomEffectInstance(instance).wipeShowTarget =

this.wipeShowTarget;

CustomEffectInstance(instance).glowColor =

this.glowColor;

CustomEffectInstance(instance).glowInner =

this.glowInner;

CustomEffectInstance(instance).glowStrength =

this.glowStrength;

} //end initInstance

Set the property values in the instance object
According to About creating a custom e�ect 6 , the purpose of this method is to copy property values

from the factory class to the instance class. Flex calls this method from the E�ect.createInstance()
method. You don't have to call it yourself, but you must prepare it to be called.

A reference to the instance object as type iE�ectInstance
The initInstance method receives a reference to the instance object as the interface type IE�ectIn-

stance . The objective is to write values into the properties belonging to the instance object. However, the
IE�ectInstance interface doesn't know anything about properties having those names. Therefore, it is nec-
essary to cast the instance object's reference to the type of the instance object before making each assignment.
One such cast operation is shown by the statement that begins with CustomE�ectInstance(instance)
in Listing 4.

Call the initInstance method of the superclass
Also note that you must call the initInstance method of the superclass in your overridden method as

shown in Listing 4.
This method provides the mechanism by which required property values make it all the way from the

driver class to the instance class.
Override the getA�ectedProperties method
According to About creating a custom e�ect 7 , you must override the inherited method named getAf-

fectedProperties in such a way as to return an array of strings. Each string is the name of a property
of the target object that is changed by the e�ect. If no properties are changed, you must return an empty
array.

Listing 5 shows my overridden version of the getA�ectedProperties method.

Listing 5: Override the getA�ectedProperties method.

override public function

getAffectedProperties():Array{

return ["rotation","rotationX","rotationY","x","y"];

} //end getAffectedProperties

//--//

} //end class

} //end package

This is a little di�cult
It is a little di�cult to know exactly which properties belonging to the target component will be modi�ed

by the e�ect, particularly when the custom e�ect is a composite of existing e�ects. Also, I don't know
whether a change must be permanent or whether a temporary change in the value of a property requires

6http://livedocs.adobe.com/�ex/3/html/help.html?content=createe�ects_2.html#178126
7http://livedocs.adobe.com/�ex/3/html/help.html?content=createe�ects_2.html#178126

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 10

that it be returned by the getA�ectedProperties method. There are several target property values that
are temporarily changed by this custom e�ect.

In this program, the target component is a Button object but it could be any component. I went
through the list of properties belonging to a button and came up with the �ve shown in Listing 5 as those
most likely to be modi�ed.

The end of the CustomE�ect class
Listing 5 also signals the end of the class named CustomE�ect . In addition to the methods that

were overridden above, the following two inherited methods may optionally be overridden as well:

• e�ectStartHandler - called when the e�ect instance starts playing.
• e�ectEndHandler - called when the e�ect instance �nishes playing.

As the names and descriptions of these two methods suggest, they can be overridden to provide any special
behavior that you need when the e�ect starts and �nishes playing.

5.3 The class named CustomE�ectInstance

The class named CustomE�ectInstance begins in Listing 6. A complete listing of the class is provided
in Listing 20 near the end of the lesson.

Listing 6: Beginning of the CustomE�ectInstance class.

package CustomClasses{

import mx.effects.EffectInstance;

import mx.effects.Glow;

import mx.effects.Parallel;

import mx.effects.Rotate;

import mx.effects.WipeRight;

import mx.events.FlexEvent;

public class CustomEffectInstance

extends EffectInstance{

//Instantiate the individual effects that will be

// combined in parallel to produce the custom effect.

private var wipeEffect:WipeRight = new WipeRight();

private var rotateEffect:Rotate = new Rotate();

private var glowEffect:Glow = new Glow();

Extends the class named E�ectInstance
This class extends the class named E�ectInstance . As before, the code in this class will override

methods inherited from the E�ectInstance class.
Instantiate and save references to standard e�ects
Listing 6 instantiates and saves references to the WipeRight , Rotate , and Glow e�ect classes.

They will be combined to run concurrently later in the program.
Declare variables for storage of e�ect properties
Listing 7 declares a set of variables that will be used to store the properties for the three di�erent e�ects

that are combined to create a composite e�ect.

Listing 7: Declare variables for storage of e�ect properties.

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 11

//Variables for the storage of effect properties.

public var theDuration:Number;

public var rotateAngleFrom:Number;

public var rotateAngleTo:Number;

public var wipeShowTarget:Boolean;

public var glowColor:uint;

public var glowInner:Boolean;

public var glowStrength:Number;

Property values are stored in these variables by the code in the initInstance method shown in Listing 4.
The constructor for the CustomE�ectInstance class
The constructor for the class is shown in its entirety in Listing 8.

Listing 8: The constructor for the CustomE�ectInstance class.

public function CustomEffectInstance(

theTarget:Object){

super(theTarget);

//Set the target for all three individual effects.

rotateEffect.target = theTarget;

wipeEffect.target = theTarget;

glowEffect.target = theTarget;

} //end constructor

The target component
As was the case in Listing 3, this constructor receives a parameter of the generic type Object , which

speci�es the component on which the e�ect will be played.
A di�erent E�ectInstance object for each target component
If multiple target components are speci�ed by setting the targets property of the CustomE�ect

class, di�erent objects of the CustomE�ectInstance class are instantiated and targeted to the di�erent
components in the list of target components.

Target the WipeRight, Rotate, and Glow e�ects to the target component
The code in the constructor sets the speci�ed target to be the target for the three types of standard

e�ects that will be played concurrently.
Override the inherited play method
You may have noticed that the code in the CustomE�ect class didn't include any of the operational

details regarding the nature of the custom e�ect. Those details are programmed into an overridden play
method that begins in Listing 9.

Listing 9: Override the inherited play method.

override public function play():void{

super.play();

//Note: The following values cannot be set in the

// constructor because the variables aren't stable

// at that point in time.

//Configure the rotate effect

rotateEffect.angleFrom = rotateAngleFrom;

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 12

rotateEffect.angleTo = rotateAngleTo;

rotateEffect.duration = theDuration;

//Configure the wipe effect.

wipeEffect.showTarget = wipeShowTarget;

wipeEffect.duration = theDuration;

//Configure the glow effect.

glowEffect.color = glowColor;

glowEffect.duration = theDuration;

glowEffect.inner = glowInner;

glowEffect.strength = glowStrength;

The overridden play method produces the desired e�ect
Later on you will see that the driver class for this program instantiates an object of the custom e�ect

class and calls the play method on that object. At that point, the driver class will be calling the method
that begins in Listing 9.

Set the required properties on the three standard e�ects
Listing 9 uses the values that were stored in the variables in Listing 7 by the initInstance method in

Listing 4 to set the required properties for each of the three individual e�ects that will be combined to
produce this custom e�ect.

Ordinarily, you might think that this could have been accomplished in the constructor for the class.
However, the values in the variables in Listing 7 aren't stable until the constructor has �nished constructing
the object. Therefore, it is necessary to defer the assignments in Listing 9 until after the construction of the
object is complete.

Play the three e�ects in parallel
You learned how to use an object of the Parallel class to play two or more e�ects in parallel in the

earlier lesson titled Events, Triggers, and E�ects .

Listing 10: Play the three e�ects in parallel.

//Play all three effects in parallel.

var parallel:Parallel = new Parallel();

parallel.addChild(rotateEffect);

parallel.addChild(glowEffect);

parallel.addChild(wipeEffect);

parallel.play();

} //end play

//--//

} //end class

} //end package

Therefore, you shouldn't have any di�culty understanding the code in Listing 10.
Steps required to create a custom e�ect
You must de�ne a factory class and an instance class. The following steps are required to create and

prepare the factory class:

• De�ne a factory class that extends the E�ect class.
• Declare variables in the factory class, if any are required, to store the property values for the custom

e�ect.
• De�ne a constructor for the factory class that calls the constructor for the superclass and also sets the

name of the instance class into the inherited variable named instanceClass .

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 13

• Override the initInstance method in the factory class to store the property values into variables in
the instance class. Also call the initInstance method of the superclass in that overridden method.

• Override the getA�ectedProperties method in the factory class to return a list of target component
properties that will be modi�ed by the e�ect. Return an empty array if none will be modi�ed.

De�ne and prepare the instance class
Having de�ned the factory class using the steps listed above, de�ne the instance class by performing the

following steps:

• De�ne an instance class that extends the E�ectInstance class.
• Declare public instance variables for the storage of e�ect property values if any are required.
• De�ne a constructor for the instance class that deals appropriately with the target component.
• Override the inherited play method to implement the actual behavior of the custom e�ect.

The end of the CustomE�ectInstance class
Listing 10 signals the end of the class named CustomE�ectInstance .

5.4 The Driver class for the program named CustomE�ect02

The two classes discussed above constitute the whole of the custom e�ect. I will provide and explain two
di�erent driver classes that use the same custom e�ect but use it in di�erent ways. The driver class for the
program named CustomE�ect02 begins in Listing 11. A complete listing of this class is provided in
Listing 21 near the end of the lesson.

Two ways to play e�ects
You learned in the earlier lesson titled Events, Triggers, and E�ects that there are at least two

di�erent ways to cause an e�ect to be played on a component in an ActionScript program. One way is to call
the setStyle method on the component and associate an e�ect trigger with an e�ect. With that approach,
the e�ect will be played each time the e�ect trigger �res.

The second way
The second way to play an e�ect on a component is to target an E�ect object to the component and

then call the play method on the e�ect object. This approach doesn't make explicit use of the e�ect
trigger.

I will illustrate the second approach in the program named CustomE�ect02 , and will illustrate the
�rst approach later in the program named CustomE�ect03 .

Beginning of the Driver class for CustomE�ect02
The Driver class begins in Listing 11.

Listing 11: Beginning of the Driver class for CustomE�ect02.

package CustomClasses{

import mx.containers.VBox;

import mx.controls.Button;

import mx.controls.Label;

import mx.controls.Spacer;

import flash.events.MouseEvent;

public class Driver extends VBox{

//Instantiate and save references to all of the

// objects needed by the program.

private var title:Label = new Label();

private var btnA:Button = new Button();

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 14

private var btnB:Button = new Button();

private var spacer:Spacer = new Spacer();

private var theEffect:CustomEffect =

new CustomEffect();

The code in Listing 11 extends the VBox class and instantiates objects for all of the components that
will be required to produce the GUI shown in Figure 1. In addition, Listing 11 instantiates an object of the
new CustomE�ect class.

No target is passed to the constructor
As you can see from Listing 11, a target component was not passed to the constructor for the Custom-

E�ect class. Instead, an alternative approach that sets the targets property will be used.
Beginning of the constructor for the Driver class
The constructor for the Driver class begins in Listing 12.

Listing 12: Beginning of the constructor for the Driver class.

public function Driver(){//constructor

//Make some space at the top of the display.

spacer.height = 40;

addChild(spacer);

//Set title properties and add to the VBox.

title.setStyle("color","0xFFFF00");

title.setStyle("fontSize",14);

title.text = "Demo custom effect";

addChild(title);

//Instantiate two buttons and add them to the VBox.

// Register the same event listener on both of

// them.

btnA.label = "Click me and watch the effect.";

btnA.addEventListener(MouseEvent.CLICK,handler);

addChild(btnA);

btnB.label = "Or click me instead.";

btnB.addEventListener(MouseEvent.CLICK,handler);

addChild(btnB);

There is nothing new in Listing 12 so further explanation shouldn't be required. It is worth noting, however,
that the same click event listener is registered on both buttons.

Set properties on the custom e�ect
Listing 13 shows the code that sets properties on the custom e�ect.

Listing 13: Set properties on the custom e�ect.

//Specify both buttons to be the target for the

// same effect.

theEffect.targets = [btnA,btnB];

//Set various properties needed by the effect.

theEffect.theDuration = 4000;

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 15

theEffect.rotateAngleFrom = 0;

theEffect.rotateAngleTo = 720;

theEffect.wipeShowTarget = true;

theEffect.glowColor = 0xFF0000;

theEffect.glowInner = true;

theEffect.glowStrength = 255;

} //end constructor

With the exception of the property named targets , the values that are assigned in Listing 13 are stored
in the variables that are declared in Listing 2.

The targets property
The targets property is inherited into the CustomE�ect class from the E�ect class. Note that

both buttons are passed to the targets property in the form of an array containing references to the two
buttons. This causes the custom e�ect to be played on both buttons at the same time.

Listing 13 also signals the end of the constructor for the Driver class.
The common click event handler
The click event handler that is registered on both buttons is shown in Listing 14.

Listing 14: The common click event handler.

public function handler(event:MouseEvent):void{

theEffect.play();

}//end handler

} //end class

} //end package

The event handler calls the play method on the custom e�ect object whenever either of the buttons shown
in Figure 1 is clicked. This causes the play method de�ned in Listing 9 to be executed.

The end of the program
Listing 14 also signals the end of the program named CustomE�ect02 .

5.5 The Driver class for the program named CustomE�ect03

The Driver class for the program named CustomE�ect03 begins in Listing 15. A complete listing of
the class is provided in Listing 22 near the end of the lesson. This program uses the �rst approach (p. 13)
for playing an e�ect.

Listing 15: Beginning of the Driver class for CustomE�ect03.

package CustomClasses{

import mx.containers.VBox;

import mx.controls.Button;

import mx.controls.Label;

import mx.controls.Spacer;

public class Driver extends VBox{

//Instantiate and save references to all of the

// objects needed by the program.

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 16

private var title:Label = new Label();

private var btnA:Button = new Button();

private var btnB:Button = new Button();

private var spacer:Spacer = new Spacer();

private var theEffect:CustomEffect =

new CustomEffect();

//--//

public function Driver(){//constructor

//Make some space at the top of the display.

spacer.height = 40;

addChild(spacer);

//Set title properties and add to the VBox.

title.setStyle("color","0xFFFF00");

title.setStyle("fontSize",14);

title.text = "Demo custom effect";

addChild(title);

//Instantiate two buttons and add them to the VBox.

// Register the same event listener on both of

// them.

btnA.label = "Click me and watch the effect.";

addChild(btnA);

btnB.label = "Or click me instead.";

addChild(btnB);

Very similar to the previous code
The code in Listing 15 matches the code in Listing 11 and Listing 12 with a few exceptions:

• There is no import directive for the MouseEvent class.
• There are no click event handlers registered on the buttons.

Set properties on the custom e�ect
Listing 16 sets the properties on the custom e�ect.

Listing 16: Set properties on the custom e�ect.

//Set various properties needed by the effect.

theEffect.theDuration = 4000;

theEffect.rotateAngleFrom = 0;

theEffect.rotateAngleTo = 720;

theEffect.wipeShowTarget = true;

theEffect.glowColor = 0xFF0000;

theEffect.glowInner = true;

theEffect.glowStrength = 255;

Once again, this code is very similar to the code in Listing 13. There is one major di�erence, however. The
targets property for the e�ect is not explicitly set to the buttons as is the case in Listing 13.

Apply the e�ect to the two buttons individually

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 17

Listing 17 shows the major di�erence between the two programs.

Listing 17: Apply the e�ect to the two buttons individually.

btnA.setStyle("mouseUpEffect",theEffect);

btnB.setStyle("mouseUpEffect",theEffect);

} //end constructor

//--//

} //end class

} //end package

Use the setStyle method and the e�ect trigger
Whereas the previous program explicitly sets the buttons as targets of the e�ect and calls the play

method on the e�ect, this program uses the setStyle approach and associates the custom e�ect with a
mouseUpE�ect trigger on each button individually. As a result, when the mouse button is released while
the mouse pointer is over one of the buttons, the e�ect is played on that button alone.

May not be possible to specify multiple targets
I don't know of any easy way to use this approach to cause the e�ect to be played on two or more

components at the same time. The documentation hints that this may not be possible.
The end of the program
Listing 17 also signals the end of the Driver class and the end of the program.

6 Run the program

I encourage you to run (p. 1) this program from the web. Then copy the code from Listing 18 through
Listing 22. Use that code to create Flex projects. Compile and run the projects. Experiment with the code,
making changes, and observing the results of your changes. Make certain that you can explain why your
changes behave as they do.

7 Resources

I will publish a list containing links to ActionScript resources as a separate document. Search for ActionScript
Resources in the Connexions search box.

8 Complete program listings

Complete listings of the Flex applications discussed in this lesson are provided below.

Listing 18: Common MXML code used for both programs.

<?xml version="1.0" encoding="utf-8"?>

<!--CustomEffect02 11/26/09

Illustrates a custom effect, which is the parallel

playing of three standard effects:

WipeRight

Rotate

Glow

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 18

The effect is applied to two buttons each time either

button is clicked.

This version sets the targets on the effect and calls the

play method on the effect.

See the Flex 3 Cookbook, page 363

Also see http://livedocs.adobe.com/flex/3/html/help.html?

content=createeffects_2.html#178126

Also see http://livedocs.adobe.com/flex/3/html/help.html?

content=behaviors_04.html#275399

-->

<mx:Application

xmlns:mx="http://www.adobe.com/2006/mxml"

xmlns:cc="CustomClasses.*">

<cc:Driver/>

</mx:Application>

Listing 19: Source code for the class named CustomE�ect.

package CustomClasses{

import mx.effects.Effect;

import mx.effects.IEffectInstance;

import mx.events.EffectEvent;

public class CustomEffect extends Effect{

//Would prefer to make these private and use implicit

// setter methods, but I decided to leave them public

// to simplify the code.

public var theDuration:Number = 2000;//default value

public var rotateAngleFrom:Number = 0;//default value

public var rotateAngleTo:Number = 360;//default value

public var wipeShowTarget:Boolean = true;//default

public var glowColor:uint = 0xFF0000;//default value

public var glowInner:Boolean = true;//default value

public var glowStrength:Number = 255;//default value

public function CustomEffect(target:Object=null){

super(target);

instanceClass = CustomEffectInstance;

} //end constructor

override protected function initInstance(

instance:IEffectInstance):void{

super.initInstance(instance);

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 19

CustomEffectInstance(instance).theDuration =

this.theDuration;

CustomEffectInstance(instance).rotateAngleFrom =

this.rotateAngleFrom;

CustomEffectInstance(instance).rotateAngleTo =

this.rotateAngleTo;

CustomEffectInstance(instance).wipeShowTarget =

this.wipeShowTarget;

CustomEffectInstance(instance).glowColor =

this.glowColor;

CustomEffectInstance(instance).glowInner =

this.glowInner;

CustomEffectInstance(instance).glowStrength =

this.glowStrength;

} //end initInstance

//--//

override public function

getAffectedProperties():Array{

return ["rotation","rotationX","rotationY","x","y"];

} //end getAffectedProperties

//--//

} //end class

} //end package

Listing 20: Source code for the class named CustomE�ectInstance.

package CustomClasses{

import mx.effects.EffectInstance;

import mx.effects.Glow;

import mx.effects.Parallel;

import mx.effects.Rotate;

import mx.effects.WipeRight;

import mx.events.FlexEvent;

public class CustomEffectInstance

extends EffectInstance{

//Instantiate the individual effects that will be

// combined in parallel to produce the custom effect.

private var wipeEffect:WipeRight = new WipeRight();

private var rotateEffect:Rotate = new Rotate();

private var glowEffect:Glow = new Glow();

//Variables for the storage of effect properties.

public var theDuration:Number;

public var rotateAngleFrom:Number;

public var rotateAngleTo:Number;

public var wipeShowTarget:Boolean;

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 20

public var glowColor:uint;

public var glowInner:Boolean;

public var glowStrength:Number;

public function CustomEffectInstance(

theTarget:Object){

super(theTarget);

//Set the target for all three individual effects.

rotateEffect.target = theTarget;

wipeEffect.target = theTarget;

glowEffect.target = theTarget;

} //end constructor

override public function play():void{

super.play();

//Note: The following values cannot be set in the

// constructor because the variables aren't stable

// at that point in time.

//Configure the rotate effect

rotateEffect.angleFrom = rotateAngleFrom;

rotateEffect.angleTo = rotateAngleTo;

rotateEffect.duration = theDuration;

//Configure the wipe effect.

wipeEffect.showTarget = wipeShowTarget;

wipeEffect.duration = theDuration;

//Configure the glow effect.

glowEffect.color = glowColor;

glowEffect.duration = theDuration;

glowEffect.inner = glowInner;

glowEffect.strength = glowStrength;

//Play all three effects in parallel.

var parallel:Parallel = new Parallel();

parallel.addChild(rotateEffect);

parallel.addChild(glowEffect);

parallel.addChild(wipeEffect);

parallel.play();

} //end play

//--//

} //end class

} //end package

Listing 21: Driver class for the program named CustomE�ect02.

/*CustomEffect02 11/26/09

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 21

***/

package CustomClasses{

import mx.containers.VBox;

import mx.controls.Button;

import mx.controls.Label;

import mx.controls.Spacer;

import flash.events.MouseEvent;

public class Driver extends VBox{

//Instantiate and save references to all of the

// objects needed by the program.

private var title:Label = new Label();

private var btnA:Button = new Button();

private var btnB:Button = new Button();

private var spacer:Spacer = new Spacer();

private var theEffect:CustomEffect =

new CustomEffect();

//--//

public function Driver(){//constructor

//Make some space at the top of the display.

spacer.height = 40;

addChild(spacer);

//Set title properties and add to the VBox.

title.setStyle("color","0xFFFF00");

title.setStyle("fontSize",14);

title.text = "Demo custom effect";

addChild(title);

//Instantiate two buttons and add them to the VBox.

// Register the same event listener on both of

// them.

btnA.label = "Click me and watch the effect.";

btnA.addEventListener(MouseEvent.CLICK,handler);

addChild(btnA);

btnB.label = "Or click me instead.";

btnB.addEventListener(MouseEvent.CLICK,handler);

addChild(btnB);

//Specify both buttons to be the target for the

// same effect.

theEffect.targets = [btnA,btnB];

//Set various properties needed by the effect.

theEffect.theDuration = 4000;

theEffect.rotateAngleFrom = 0;

theEffect.rotateAngleTo = 720;

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 22

theEffect.wipeShowTarget = true;

theEffect.glowColor = 0xFF0000;

theEffect.glowInner = true;

theEffect.glowStrength = 255;

} //end constructor

//--//

public function handler(event:MouseEvent):void{

theEffect.play();

}//end handler

} //end class

} //end package

Listing 22: Driver class for the program named CustomE�ect03.

/*CustomEffect03 11/27/09

***/

package CustomClasses{

import mx.containers.VBox;

import mx.controls.Button;

import mx.controls.Label;

import mx.controls.Spacer;

public class Driver extends VBox{

//Instantiate and save references to all of the

// objects needed by the program.

private var title:Label = new Label();

private var btnA:Button = new Button();

private var btnB:Button = new Button();

private var spacer:Spacer = new Spacer();

private var theEffect:CustomEffect =

new CustomEffect();

//--//

public function Driver(){//constructor

//Make some space at the top of the display.

spacer.height = 40;

addChild(spacer);

//Set title properties and add to the VBox.

title.setStyle("color","0xFFFF00");

title.setStyle("fontSize",14);

title.text = "Demo custom effect";

addChild(title);

//Instantiate two buttons and add them to the VBox.

http://cnx.org/content/m34457/1.1/

OpenStax-CNX module: m34457 23

// Register the same event listener on both of

// them.

btnA.label = "Click me and watch the effect.";

addChild(btnA);

btnB.label = "Or click me instead.";

addChild(btnB);

//Set various properties needed by the effect.

theEffect.theDuration = 4000;

theEffect.rotateAngleFrom = 0;

theEffect.rotateAngleTo = 720;

theEffect.wipeShowTarget = true;

theEffect.glowColor = 0xFF0000;

theEffect.glowInner = true;

theEffect.glowStrength = 255;

//Apply the effect to the two buttons individually.

btnA.setStyle("mouseUpEffect",theEffect);

btnB.setStyle("mouseUpEffect",theEffect);

} //end constructor

//--//

} //end class

} //end package

9 Miscellaneous

This section contains a variety of miscellaneous materials.

note: Housekeeping material

• Module name: Creating Custom E�ects
• Files:

· ActionScript0118\ActionScript0118.htm
· ActionScript0118\Connexions\ActionScriptXhtml0118.htm

note: PDF disclaimer: Although the Connexions site makes it possible for you to download a
PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

-end-

http://cnx.org/content/m34457/1.1/

