

 [image: Sound in ActionScript]

 Sound in ActionScript
By: Richard Baldwin
Online: <http://cnx.org/content/m34496/1.1/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2010/05/29

Sound in ActionScript
By: Richard Baldwin
Online: <http://cnx.org/content/m34496/1.1/>
This module is copyrighted by Richard Baldwin.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Module revised: 2010/05/29

Sound in ActionScript

Click

Sound03

(Click the "Back" button in your browser
to return to this page.)

1.
Table of Contents

 	

Preface

 	

General

 	

Viewing tip

 	

Figures

	

Listings

			

		

	

Supplemental material

	

	

General background information

	

Preview

	

Discussion and sample code

 	

The MXML code

	

The ActionScript code

	

	

Run the program

	

Resources

	

Complete program listings

	

Miscellaneous

2.

Preface

General

This tutorial lesson is part of a series of lessons dedicated to
object-oriented programming

(OOP)

 with ActionScript.

	All references to ActionScript in this lesson are references to version 3.0 or later.

Several ways to create and launch ActionScript programs

There are several ways to create and launch programs written in the
ActionScript programming language. Many of the lessons in this series will
use Adobe Flex as the launch pad for the sample ActionScript programs.

An earlier lesson titled

The Default
Application Container

 provided information on how to get started programming
with Adobe's Flex Builder 3. The lesson titled

Using Flex 3 in
a Flex 4 World

 was added later to accommodate the release of Flash Builder
4.

(See

Baldwin's Flex programming
website

.)

 You should study those lessons before embarking on the
lessons in this series.

Some understanding of Flex MXML will be required

I also recommend that you study all of the lessons on

Baldwin's Flex programming
website

 in parallel with your study of these ActionScript lessons.
Eventually you will probably need to understand both ActionScript and Flex and
the relationships that exist between them in order to become a successful
ActionScript programmer.

Will emphasize ActionScript code

It is often possible to use either ActionScript code or Flex MXML code to
achieve the same result. Insofar as this series of lessons is concerned,
the emphasis will be on ActionScript code even in those cases where Flex MXML
code may be a suitable alternative.

Viewing tip

 I recommend that you open another copy of this document in a separate
browser window and use the following links to easily find and view the figures
and listings while you are reading about them.

Figures

 	

Figure 1

. Sound03 image.

	

Figure 2

. Project file structure for Sound03.

Listings

 	

Listing 1

. MXML code for the project named
	Sound03.

	

Listing 2

. Import directives for the Driver
	class

	

Listing 3

. Beginning of the Driver class
	proper.

	

Listing 4

. The constructor for the Driver
	class.

	

Listing 5

. A CREATION_COMPLETE event handler.

	

Listing 6

. Beginning of the Timer event
	handler.

	

Listing 7

. Play an occasional wind sound.

	

Listing 8

. Play an occasional sizzle sound.

	

Listing 9

. The SOUND_COMPLETE event handler.

	

Listing 10

. MXML code for the project named
	Sound03.

	

Listing 11

. Class named Driver for the project
	named Sound03.

Supplemental material

 I recommend that you also study the other lessons in my extensive collection
of online programming tutorials. You will find a consolidated index at

www.DickBaldwin.com

.

3.

General background
information

A sound in ActionScript is represented by an object of the class named

Sound

.

When the information encapsulated in a

Sound

 object is

played

, that process is represented by an object of the class named

SoundChannel

.

According to the

documentation

:

"The Sound class lets you work with sound in an application. The
Sound class lets you create a new Sound object, load and play an external MP3
file into that object, close the sound stream, and access data about the sound,
such as information about the number of bytes in the stream and ID3 metadata.
More detailed control of the sound is performed through the sound source -- the
SoundChannel or Microphone object for the sound -- and through the properties in
the SoundTransform class that control the output of the sound to the computer's
speakers."

The program that I will explain in this lesson makes use of events and
methods of the

Sound

 class and the

SoundChannel

class.

You will find a lot of interesting and useful information in the document
titled

Basics of working with sound

 on the Adobe website, including the following:

"Although there are various sound file formats used to encode
digital audio, ActionScript 3.0 and Flash Player support sound files that are
stored in the mp3 format. They cannot directly load or play sound files in other
formats like WAV or AIFF."

A variety of different sound file converter programs are available on the web
that can be used to convert other sound file formats into mp3 format.

4.

Preview

Run the ActionScript program named Sound03

If you have the Flash Player plug-in

(version 10 or later)

 installed
in your browser, click

here

 to run the program named

Sound03

.

If you don't have the proper Flash Player installed, you should be notified
of that fact and given an opportunity to download and install the Flash Player
plug-in program.

Demonstrates the use of sound with ActionScript

This project is intended to demonstrate the use of sound with ActionScript. It also displays
the image of a cloudy sky shown in Figure 1, but the only purpose of the image is to make it obvious when the program starts running.

 [image: Missing image]

Figure 1.

Sound03 image.

Sound03 image.

Stormy weather

The project is designed to give you the impression of the sounds that you
might hear while sitting on your covered deck looking at the sky during a thunder
storm.

Four stormy-weather sounds

The project plays the following sounds extracted from mp3 files:

 	
rain

	
wind

	
sizzle

	
thunder

The

rain

 sound is continuous.

The

wind

 sound is played on startup and then occasionally
thereafter on the basis of a random number generator.

The

sizzle

 sound is also played occasionally on the basis of a random number generator.

(You will probably need to be patient to hear this sound because it isn't
played very often.)

 As soon as the sizzle sound finishes, the sound of a

thunder

 clap is played.

5.

Discussion and sample code

	If you develop this project using
	

	FlashDevelop

, you will need to manually copy all of the sound files into
	the bin folder.

	

The project file structure

	The final project file structure, captured from the FlashDevelop project
	window, is shown in Figure 2.

 [image: Missing image]

Figure 2.

Project file structure for Sound03.

Project file structure for Sound03.

As you can see in Figure 2, all of the sound and image files are stored in
the folder named

src

. In addition, all of the sound files were
manually copied into the folder named

bin

.

	

Will explain in fragments

I will explain the code
	for this program in fragments. Complete listings of the MXML code and the
	ActionScript code are provided in Listing 10 and Listing 11 near the end of
	the lesson.

The
MXML code

The MXML code is shown in
Listing 1 and also in Listing 10 for your convenience.

Example 1.
 <?xml version="1.0" encoding="utf-8"?>
<!--
This project is intended to demonstrate the use of sound
with ActionScript. See the file named Driver.as for more
information
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

As is often the case in this series of tutorial lessons, the MXML file is
very simple because the program was coded almost entirely in ActionScript. The
MXML code simply instantiates an object of the

Driver

 class.
From that point forward, the behavior of the program is controlled by
ActionScript code.

	

The ActionScript code

Import directives for the Driver class

The code for the

Driver

 class begins in Listing 2, which shows the
package declaration and the import directives.

Example 2.
 package CustomClasses{
 import flash.display.Bitmap;
 import mx.containers.Canvas;
 import mx.controls.Image;
 import mx.events.FlexEvent;
 import flash.events.TimerEvent;
 import flash.utils.Timer;
 import flash.media.Sound;
 import flash.net.URLRequest;
 import flash.media.SoundChannel;
 import flash.events.Event;

New to this lesson

The directives to import the

Sound

 class, the

URLRequest

 class, the

SoundChannel

 class, and
possibly the

Event

 class are all new to this lesson.

Beginning of the Driver class proper

The definition of the

Driver

 class begins in Listing
3.

Example 3.
 public class Driver extends Canvas {
 //Extending Canvas makes it possible to locate
 // images with absolute coordinates. The default
 // location is 0,0;

 private var smallSky:Image = new Image();

 //Instantiate a Timer object that will fire ten events
 // per second.
 private var timer:Timer = new Timer(100);

 //Declare a counter that will keep track of the number
 // of timer events that have been fired.
 private var loopCntr:uint;

 //Declare variables for the four sounds.
 private var sizzle:Sound;
 private var thunder:Sound;
 private var wind:Sound;
 private var rain:Sound;

 //Declare variables that are used to control when the
 // thunder sound is played.
 private var channel:SoundChannel;
 private var sizzlePlaying:Boolean = false;

Nothing new here

There is nothing new in Listing 3. I will call your attention to the
declaration of variables of type

Sound

 and

SoundChannel

.
Otherwise, no explanation beyond the embedded comments should be required.

The constructor for the Driver class

The constructor for the

Driver

 class is shown in its
entirety in Listing 4.

Example 4.
 public function Driver(){//constructor
 //Load the sky image.
 //Note the use of a / to eliminate the "Unable to
 // resolve asset for transcoding" Compiler Error
 [Embed("/smallsky.jpg")]
 var imgSmall:Class;
 smallSky.load(imgSmall);

 //Load four sound files and play two of them now.
 sizzle = new Sound();
 sizzle.load(new URLRequest("sizzle.mp3"));

 thunder = new Sound();
 thunder.load(new URLRequest("thunder.mp3"));

 wind = new Sound();
 wind.load(new URLRequest("wind.mp3"));
 //Play the wind sound through twice at startup.
 wind.play(0,2);

 rain = new Sound();
 rain.load(new URLRequest("rain.mp3"));
 //Play the rain sound forever
 rain.play(0,int.MAX_VALUE);

 //Register an event listener on the CREATION_
 // COMPLETE event.
 this.addEventListener(FlexEvent.CREATION_COMPLETE,
 creationCompleteHandler);
 } //end constructor

There are quite a few things in Listing 4 that are new to this lesson.

Embed the image file

Although the code required to embed the image file in the swf file is not new
to this lesson, it is worth highlighting the need to include the slash character
to make the code compatible with the FlashDevelop IDE.

Load the sizzle sound

Listing 4 instantiates a new

Sound

 object and stores the
object's
reference in the instance variable named

sizzle

. Then it calls
the

load

 method on that object to load the contents of the
sound file named

sizzle.mp3

 into the new

Sound

 object.

The load method of the Sound class

Here is part of what the

documentation

 has to say about the

load

method of the class named

Sound

:

"Initiates loading of an external MP3 file from the specified
URL. If you provide a valid URLRequest object to the Sound constructor, the
constructor calls Sound.load() for you. You only need to call Sound.load()
yourself if you don't pass a valid URLRequest object to the Sound constructor or
you pass a null value.

Once load() is called on a Sound object, you can't later load a
	different sound file into that Sound object. To load a different sound file,
	create a new Sound object."

Because I didn't provide a

URLRequest

 object to the
constructor when I instantiated the object of the

Sound

 class,
it was necessary for me to call the

load

 method on the

Sound

 object to load the sound file named

sizzle.mp3

.

Required parameter for the load method

Only one parameter is required by the

load

 method and it
must be of type

URLRequest

. To make a long story short, at
least for the case where the sound file is located in the

src

folder as shown in Figure 2, you can create the required

URLRequest

object by calling the constructor for the

URLRequest

 class and
passing the name of the sound file as a

String

 parameter to the
constructor as shown in Listing 4.

Don't play the sizzle sound yet

The sizzle sound and the thunder sound are both encapsulated in

Sound

objects by the constructor in Listing 4. However, those sounds are not played by
the constructor.

Encapsulate and play the wind wound

Listing 4 uses similar code to encapsulate the contents of the file named

wind.mp3

 in an object of type

Sound

 referred
to by the instance variable named

wind

.

Then Listing 4 calls the

play

 method on the

wind

object to cause the wind sound to be played from beginning to end twice when the
program first starts running.

(It will be played again later at random
times.)

The play method of the Sound class

Here is part of what the

documentation

 has to say about the

play

 method of the

Sound

 class:

"Generates a new SoundChannel object to play back the sound.
This method returns a SoundChannel object, which you access to stop the sound
and to monitor volume. (To control the volume, panning, and balance, access the
SoundTransform object assigned to the sound channel.) "

In other words, the play method causes the sound to start playing through a

SoundChannel

 object, which you can manipulate to achieve
various effects.

Didn't save a reference to SoundChannel object

Because I didn't have any need to manipulate the wind sound by way of the

SoundChannel

 object, I didn't capture and save a reference to
the object returned by the

play

 method.

Parameters of the play method of the Sound class

The

play

 method has three parameters, each of which has a
default value. By default

(and this doesn't seem to agree with the
documentation)

, if you call the

play

 method on a

Sound

 object and don't pass any parameters, the sound encapsulated in
the object will be played once, starting at the beginning of the sound.

The first parameter

The first parameter is the initial position in milliseconds at which playback
should start. The default value for this parameter is 0, which causes the sound
to start at the beginning by default.

As is always the case with default parameters, if you want to provide a
non-default value for the second parameter, you must also provide a value for
the first parameter. When the

play

 method is called on the

wind

 sound in Listing 4, a value of 0 is passed as the first
parameter to cause the sound to play from the beginning.

The second parameter

Instead of telling you what the documentation seems to say about the second
parameter, I'm going to tell you how the second parameter behaves, which doesn't
seem to agree with the documentation.

The value of the second parameter defines the number of times the sound will
be played before the sound channel stops playback. For example, a value of 2 is
passed as the second parameter when the

play

 method is called
on the

wind

 sound in Listing 4. This parameter, in conjunction
with the first parameter, causes the

wind

 sound to be played through twice from the beginning
to the end when
the program starts running.

Rain, rain, go away: not any time soon

The maximum possible integer value is passed as the second parameter when the

play

 method is called on the

rain

 sound in
Listing 4. This causes the rain sound to play over and over for a length of time
that is probably longer than anyone would want to listen to it.

A CREATION_COMPLETE event listener

The last statement in the constructor in Listing 4 registers a

CREATION_COMPLETE

 event handler on the

Canvas

 object.
You are already familiar with event listeners of this type. The code for the
listener is shown in its entirety in Listing 5.

Example 5.
 private function creationCompleteHandler(
 event:mx.events.FlexEvent):void{

 //Set the width and height of the Canvas object
 // based on the size of the bitmap in the smallSky
 // image.
 this.width = Bitmap(smallSky.content).width;
 this.height = Bitmap(smallSky.content).height;

 //Add the image to this Canvas object.
 this.addChild(smallSky);

 //Register a timer listener and start the timer
 // running.
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 timer.start();

 } //end creationCompleteHandler

As you learned in earlier lessons, this handler method is executed when
the

Canvas

 object has been fully created.

Nothing new here

There is nothing new in Listing 5. The code in Listing 5:

 	
Sets the width and the height of the

Canvas

 object to match the width
	and the height of the image that is displayed while the program is running.

	
Adds the image to the

Canvas

 object.

	
Registers an event listener on the

Timer

 object that
	was instantiated in Listing 3 and starts the timer running to fire ten
	events per second.

Beginning of the TIMER event handler

The event handler that is registered on the

Timer

 object
begins in Listing 6. This method is executed each time the

Timer

object fires an event.

Example 6.
 public function onTimer(event:TimerEvent):void {

 //Update the loop counter.
 loopCntr++;
 if (loopCntr == int.MAX_VALUE - 1) {
 //Guard against numeric overflow.
 loopCntr = 0;
 }//end if

Update the loop counter

Among other things, the code in the

Timer

 event handler
maintains a count of the number of events that have been fired by the timer. The
code in Listing 6 increments the timer each time the event-handler method is
executed, and sets the value back to zero when it reaches a very large value to
guard against binary overflow.

Play an occasional wind sound

According to the code in Listing 3, the

Timer

 object will
fire an event every 100 milliseconds, or ten times per second. That causes the
event handler to be called ten times per second.

The code in Listing 7 uses the modulus operator to identify every 25th call
to the event handler. This occurs approximately once every 2.5 seconds,
depending on the accuracy of the timer.

Example 7.
 if ((loopCntr % 25 == 0) && (Math.random() > 0.75)){
 wind.play();
 }//end if

Let the wind blow: or maybe not

When the code in Listing 7 determines that 2.5 seconds have passed since the
last attempt to play the

wind

 sound, it gets a random value of
type

Number

 with a value between 0 and 1.0. If that random
value is greater than 0.75, it calls the

play

 method on the

wind

 sound to cause the sound to be played once from start to
finish.

One wind sound every ten seconds on average

Assuming that the random values are uniformly distributed, about one out of
every four random values will be greater than 0.75. Therefore, the wind sound
should be played about once every ten seconds on average.

Play an occasional sizzle sound

Listing 8 uses a similar process to play an occasional sizzle sound. Listing
8 also causes the sizzle sound to be
followed immediately by a clap of thunder.

Example 8.
 if ((loopCntr % 35 == 0) && (Math.random() > 0.5)
 && (sizzlePlaying == false)) {
 //Don't play another sizzle sound until this one
 // finishes.
 sizzlePlaying = true;

 //Play the sizzle sound and get a reference to the
 // SoundChannel object through which it is being
 // played.
 channel = sizzle.play();

 //Register an event listener that will be called
 // when the sizzle sound finishes playing.
 channel.addEventListener(
 Event.SOUND_COMPLETE, soundCompleteHandler);
 }//end if

 }//end onTimer

Save the SoundChannel reference

Listing 8 saves the

SoundChannel

 reference returned by the

play

 method in an instance variable named

 channel

when the

play

 method is called to play the

sizzle

sound.

Don't corrupt the reference to the SoundChannel object

In order to preclude the possibility of corrupting this reference by changing
its value while the sound is playing, Listing 8 uses a

 Boolean

instance variable named

 sizzlePlaying

 to guarantee that a new
sizzle sound is not played before the previous one finishes.

The value of

sizzlePlaying

 is set to true when the sizzle
sound starts playing in Listing 8 and is set to false later when the sizzle
sound finishes playing. Because the value of

sizzlePlaying

 is
tested by the conditional clause in the

if

 statement in Listing
8, that conditional clause will never return true while

sizzlePlaying

is true.

Register a SOUND_COMPLETE event handler

The

SoundChannel

 object fires a

SOUND_COMPLETE

event when the sound that it is playing finishes. Listing 8 registers an event
listener on the

SoundChannel

 object that is called each time
the sizzle sound finishes playing. As you will see shortly, the code in the
event handler sets the value of

sizzlePlaying

 to false and also
causes the thunder sound to be played as soon as the sizzle sound finishes.

The SOUND_COMPLETE event handler

The

SOUND_COMPLETE

 event handler is shown in its entirety in
Listing 9. This method is called each time the sizzle sound finishes playing.

Example 9.
 private function soundCompleteHandler(e:Event):void {
 //Allow another sizzle sound to be played now that
 // this one is finished.
 sizzlePlaying = false;
 //Play the thunder immediately following the end of
 // the sizzle sound.
 thunder.play();
 }//end soundCompleteHandler
 //--//

 } //end class
} //end package

Allow another sizzle sound to be played

Listing 9 begins by setting the value of

sizzlePlaying

 to
false. This makes it possible for the sizzle sound to be played again when the
other two expressions in the conditional clause of the

if

statement in Listing 8 return true.

Play a thunder clap

Then Listing 9 calls the

play

 method on the

thunder

sound to cause the thunder sound to be played once immediately following the
completion of each sizzle sound.

The end of the program

Listing 9 also signals the end of the

Driver

 class and the
end of the program.

6.

Run the program

I encourage you to

run

 this program from the web.
Then copy the code from Listing 10 and Listing 11. Use that code to
create your own project. Compile and run the project. Experiment with
the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

7.

Resources

I will publish a list containing links to ActionScript resources as a
separate document. Search for ActionScript Resources in the
Connexions search box.

8.

Complete program listings

 Complete listings of the programs discussed in this lesson
are provided below.

Example 10.
 <?xml version="1.0" encoding="utf-8"?>
<!--
This project is intended to demonstrate the use of sound
with ActionScript. See the file named Driver.as for more
information
-->

<mx:Application
 xmlns:mx="http://www.adobe.com/2006/mxml"
 xmlns:cc="CustomClasses.*">

 <cc:Driver/>

</mx:Application>

Example 11.
 /*Project Sound03
This project is intended to demonstrate the use of sound
with ActionScript. It also displays an image of a cloudy
sky but the only purpose of the image is to make it
obvious when the program starts running.

This project plays the following sounds extracted from
mp3 files.

rain
wind
sizzle
thunder

The rain sound is continuous.

The wind sound is played occasionally on the basis of a
random number generator.

The sizzle sound is also played occasionally on the basis
of a random number generator. As soon as the sizzle sound
finishes, a thunder clap sound is played.

Note that with FlashDevelop, you must manually put a copy
of the sound files in the bin folder.
***/
package CustomClasses{
 import flash.display.Bitmap;
 import mx.containers.Canvas;
 import mx.controls.Image;
 import mx.events.FlexEvent;
 import flash.events.TimerEvent;
 import flash.utils.Timer;
 import flash.media.Sound;
 import flash.net.URLRequest;
 import flash.media.SoundChannel;
 import flash.events.Event;

 //==//

 public class Driver extends Canvas {
 //Extending Canvas makes it possible to locate
 // images with absolute coordinates. The default
 // location is 0,0;

 private var smallSky:Image = new Image();

 //Instantiate a Timer object that will fire ten events
 // per second.
 private var timer:Timer = new Timer(100);

 //Declare a counter that will keep track of the number
 // of timer events that have been fired.
 private var loopCntr:uint;

 //Declare variables for the four sounds.
 private var sizzle:Sound;
 private var thunder:Sound;
 private var wind:Sound;
 private var rain:Sound;

 //Declare variables that are used to control when the
 // thunder sound is played.
 private var channel:SoundChannel;
 private var sizzlePlaying:Boolean = false;
 //--//

 public function Driver(){//constructor
 //Load the sky image.
 //Note the use of a / to eliminate the "Unable to
 // resolve asset for transcoding" Compiler Error
 [Embed("/smallsky.jpg")]
 var imgSmall:Class;
 smallSky.load(imgSmall);

 //Load four sound files and play two of them now.
 sizzle = new Sound();
 sizzle.load(new URLRequest("sizzle.mp3"));

 thunder = new Sound();
 thunder.load(new URLRequest("thunder.mp3"));

 wind = new Sound();
 wind.load(new URLRequest("wind.mp3"));
 //Play the wind sound through twice at startup.
 wind.play(0,2);

 rain = new Sound();
 rain.load(new URLRequest("rain.mp3"));
 //Play the rain sound forever
 rain.play(0,int.MAX_VALUE);

 //Register an event listener on the CREATION_
 // COMPLETE event.
 this.addEventListener(FlexEvent.CREATION_COMPLETE,
 creationCompleteHandler);
 } //end constructor
 //--//

 //This handler method is executed when the Canvas has
 // been fully created.
 private function creationCompleteHandler(
 event:mx.events.FlexEvent):void{

 //Set the width and height of the Canvas object
 // based on the size of the bitmap in the smallSky
 // image.
 this.width = Bitmap(smallSky.content).width;
 this.height = Bitmap(smallSky.content).height;

 //Add the image to this Canvas object.
 this.addChild(smallSky);

 //Register a timer listener and start the timer
 // running.
 timer.addEventListener(TimerEvent.TIMER, onTimer);
 timer.start();

 } //end creationCompleteHandler
 //--//

 //TimerEvent handler. This method is executed each
 // time the Timer object fires an event.
 public function onTimer(event:TimerEvent):void {

 //Update the loop counter.
 loopCntr++;
 if (loopCntr == int.MAX_VALUE - 1) {
 //Guard against numeric overflow.
 loopCntr = 0;
 }//end if

 //Play an occasional wind sound.
 if ((loopCntr % 25 == 0) && (Math.random() > 0.75)){
 wind.play();
 }//end if

 //Play an occasional sizzle sound followed
 // immediately by a clap of thunder.
 if ((loopCntr % 35 == 0) && (Math.random() > 0.5)
 && (sizzlePlaying == false)) {
 //Don't play another sizzle sound until this one
 // finishes.
 sizzlePlaying = true;
 //Play the sizzle sound and get a reference to the
 // SoundChannel object through which it is being
 // played.
 channel = sizzle.play();
 //Register an event listener that will be called
 // when the sizzle sound finishes playing.
 channel.addEventListener(
 Event.SOUND_COMPLETE, soundCompleteHandler);
 }//end if

 }//end onTimer
 //--//

 //This method is called each time the sizzle sound
 // finishes playing. Each time it is called, it plays
 // a thunder sound.
 private function soundCompleteHandler(e:Event):void {
 //Allow another sizzle sound to be played now that
 // this one is finished.
 sizzlePlaying = false;
 //Play the thunder immediately following the end of
 // the sizzle sound.
 thunder.play();
 }//end soundCompleteHandler
 //--//

 } //end class
} //end package

9.

Miscellaneous

This section contains a variety of miscellaneous materials.

Housekeeping material

 	
Module name: Sound in ActionScript

	
Files:

 	
ActionScript00160\ActionScript00160.htm

	
ActionScript00160\Connexions\ActionScriptXhtml00160.htm

PDF disclaimer:

-end-

content/cover.png
Sound in
ActionScript

content/as0160b.jpg
Project x

2|2]
' Sound03 (AS3)
& bin
&iE s
%) swfobject.js
@ expressinstal.swf
< index.html
2 rain.mp3
2 sizzle.mp3
@ Sound03.swf
+ thunder.mp3
2 vind.mp3

src
& CustomClasses
@ Driver.as
& Main.mxml
2 rain.mp3
sizzle.mp3
smalsky.jpg
2 thunder.mp3
2 wind.mp3

&% Ou... 17 Bo. Files | pr...

content/as0160a.jpg

