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Discrete Time Complex Exponential

Summary
Describes the complex exponential function for discrete time.




1. Introduction



 Complex exponentials are some of the most important functions in our study of signals and systems.  Their importance stems from their status as eigenfunctions of linear time invariant systems.  Before proceeding, you should be familiar with complex numbers.

2. The Discrete Time Complex Exponential



Complex Exponentials



 The complex exponential function will become a critical part of
	your study of signals and systems.  Its general discrete form is
	written as
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where

	              s = σ + ⅈω
	           
, is a
	complex number in terms of
	
               σ
            , the attenuation constant, and
	
               ω
             the angular frequency.
 The discrete time complex exponentials have the following property, which will become evident through discussion of Euler's formula.
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	    Given this property, if we have a complex exponential with frequency
	    
	              ω + 2π
	           , then this signal "aliases" to a complex exponential with
	    frequency 
               ω
            , implying that the equation representations of discrete complex exponentials are not unique.

	    
	  

Euler's Formula



 The mathematician Euler proved an important identity relating complex exponentials to trigonometric functions. Specifically, he discovered the eponymously named identity, Euler's formula, which states that
(1)
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 which can be proven as follows.
 In order to prove Euler's formula, we start by evaluating the Taylor series for 
               e
               
                  z
               
             about 
               z = 0, which converges for all complex 
               z
            , at 
               z = j
               x
            . The result is
(2)

 
because the second expression contains the Taylor series for cos(x) and sin(x) about 
               t = 0, which converge for all real 
               x
            . Thus, the desired result is proven.
 Choosing 
               x = ω
               n
             this gives the result
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 which breaks a discrete time complex exponential into its real part and imaginary part. Using this formula, we can also derive the following relationships.
(4)

(5)


Discrete Time Phasors



 It has been shown how the complex exponential with purely imaginary frequency can be broken up into its real part and its imaginary part. Now consider a general complex frequency 
               s = σ + ω
               j
             where 
               σ
             is the attenuation factor and 
               ω
             is the frequency. Also consider a phase difference 
               θ
            . It follows that
(6)
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 Thus, the real and imaginary parts of 
               e
               
                  sn
               
             appear below.
(7)

(8)

 Using the real or imaginary parts of complex exponential to represent sinusoids with a phase delay multiplied by real exponential is often useful and is called attenuated phasor notation.
 We can see that both the real part and the imaginary part have a
sinusoid times a real exponential. We also know that
sinusoids oscillate between one and negative one. From this
it becomes apparent that the real and imaginary parts of the
complex exponential will each oscillate within an envelope
defined by the real exponential part.
 Figure 1. 
 [image: Subfigure (a) (compexp1.png)](a) 
	    If 
                  σ
                is negative, we
	    have the case of a decaying exponential window.
	  
 [image: Subfigure (b) (compexp2.png)](b) 
	    If 
                  σ
                is positive, we
	    have the case of a growing exponential window.
 [image: Subfigure (c) (compexp3.png)](c) 
	    If 
                  σ
                is zero, we have
	    the case of a constant window.
The shapes possible for the real part of a complex
	  exponential.  Notice that the oscillations are the result of
	  a cosine, as there is a local maximum at
	  
	                 t = 0
	  .
	Of course, these drawings would be sampled in a discrete time setting.





3. Discrete Complex Exponential Demonstration



 
         
 Figure 2. 
 [image: ComplexExponentialDemo]Interact (when online) with a Mathematica CDF demonstrating the Discrete Time Complex Exponential. To Download, right-click and save target as .cdf.




      

4. Discrete Time Complex Exponential Summary



 Continuous time complex exponentials are signals of great importance to the study of signals and systems.  They can be related to sinusoids through Euler's formula, which identifies the real and imaginary parts of purely imaginary complex exponentials.  Eulers formula reveals that, in general, the real and imaginary parts of complex exponentials are sinusoids multiplied by real exponentials.  Thus, attenuated phasor notation is often useful in studying these signals.
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