
OpenStax-CNX module: m34602 1

XML - Namespaces - Flex 4
∗

R.G. (Dick) Baldwin

This work is produced by OpenStax-CNX and licensed under the

Creative Commons Attribution License 3.0†

Abstract

Learn about namespace di�erences and some of the other di�erences between Flex 3 and Flex 4.

note: Click Namespace02 1 to run the Flex program from this lesson. (Click the "Back" button
in your browser to return to this page.)

1 Table of Contents

• Preface (p. 2)

· General (p. 2)

* Viewing tip (p. 2)

· Figures (p. 2)
· Listings (p. 2)

· Supplemental material (p. 2)

• General background information (p. 2)

· Historical perspective (p. 2)
· What is Flex? (p. 3)

• Preview (p. 4)
• Discussion and sample code (p. 5)

· Skeleton mxml code and namespaces (p. 5)
· The sample program named Namespace02 (p. 7)

• Run the program (p. 15)
• Resources (p. 15)
• Miscellaneous (p. 15)

∗Version 1.1: Jun 12, 2010 7:55 pm -0500
†http://creativecommons.org/licenses/by/3.0/
1http://cnx.org/content/m34602/latest/Namespace02.html

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 2

2 Preface

2.1 General

This tutorial lesson is part of a series of lessons dedicated to programming using Adobe Flex.

note: The material in these lessons is based on Flex version 3 and Flex version 4. A distinction
between the two will usually be made in those situations where that distinction is important.

A previous lesson in this series titled XML - Namespaces - Flex 3 2 concentrated on teaching the XML
concept of namespaces and illustrated the concept using a program written in Flex version 3.

Di�erences in namespaces between Flex 3 and Flex 4
Some of the �rst things that one is likely to notice when comparing Flex version 3 to Flex version 4 3

are some obvious di�erences in the use of namespaces. Therefore, this is an opportune place in the series to
introduce Flex version 4 and to explain some of the di�erences between the two versions.

2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

2.2.1 Figures

• Figure 1 (p. 7) . Output from Namespace01.
• Figure 2 (p. 8) . Output from Namespace02.
• Figure 3 (p. 9) . Project tree for the project named Namespace02.

2.2.2 Listings

• Lasting 1 (p. 5) . Skeleton mxml code for a new Flex 3 project.
• Listing 2 (p. 6) . Skeleton mxml code for a new Flex 4 project.
• Listing 3 (p. 10) . The main mxml �le for Namespace01.
• Listing 4 (p. 11) . The main mxml �le for Namespace02.
• Listing 5 (p. 13) . Contents of the �le named Label.mxml.
• Listing 6 (p. 14) . Contents of the �le named Button.mxml.

2.3 Supplemental material

I recommend that you also study the other lessons in my extensive collection of online programming tutorials.
You will �nd a consolidated index at www.DickBaldwin.com 4 .

3 General background information

3.1 Historical perspective

Adobe's Flex is an XML-based programming language that is used to create programs that execute in the
Adobe Flash Player 5 .

Teaching XML using Flex

2http://cnx.org/content/m34600/latest/
3http://www.adobe.com/devnet/�ex/articles/�ex3and4_di�erences.html
4http://www.dickbaldwin.com/toc.htm
5http://www.adobe.com/products/�ashplayer/

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 3

In the Spring semester of 2010, I introduced Adobe's Flex version 3 and the Flex Builder 3 IDE into
a course named Introduction to XML that I had been teaching for several years at Austin Community
College in Austin, TX. The concept of using Flex as the programming vehicle to teach XML was well received
by the students.

During that same semester, Adobe released Flex version 4 and replaced Flex Builder 3 with a new
IDE named Flash Builder 4 . The new IDE supports both Flex 3 and Flex 4.

A fortunate circumstance
This is a fortunate circumstance insofar as the concept of using Flex to teach XML is concerned. Flex 4 is

similar to, but very di�erent from, and somewhat more complicated than Flex 3. The availability of the two
versions of Flex makes it possible for the students to gain experience with two similar but di�erent �avors
of XML, both supported by the same IDE and both supported by similarly formatted documentation.

3.2 What is Flex?

As mentioned above, Flex is an XML-based programming language that is used to create programs that
execute in Adobe's Flash Player. In order to understand Flex, and particularly the di�erences between Flex
3 and Flex 4, we need to start with the Flash Player and work backwards to Flex.

What is the Flash Player?
According to the Flash Player 6 website:

Adobe Flash Player is a cross-platform browser-based application runtime that delivers uncom-
promised viewing of expressive applications, content, and videos across screens and browsers.
Flash Player delivers breakthrough web experiences to over 98% of Internet users.

Flash Player is widely available
Many of the popular websites that people frequently visit require that the Flash Player be installed on

the local computer in order to view the material on the website.
Typically if you visit a website that requires the Flash Player and you don't have it installed on your com-

puter, you will be guided through the installation process. Therefore, a very large percentage of computers
already have the Flash Player installed.

An execution engine
In short, the Flash Player is an execution engine that is used to execute or play programs that are

written in the ActionScript programming language. (See Baldwin's ActionScript programming website 7

.)
What is ActionScript?
According to the ActionScript Technology Center, 8

"Adobe ActionScript is the programming language of the Adobe Flash Platform. Originally de-
veloped as a way for developers to program interactivity, ActionScript enables e�cient program-
ming of Adobe Flash Platform applications for everything from simple animations to complex,
data-rich, interactive application interfaces.

First introduced in Flash Player 9, ActionScript 3.0 is an object-oriented programming (OOP)
language based on ECMAScript � the same standard that is the basis for JavaScript � and
provides incredible gains in runtime performance and developer productivity."

What is the Adobe Flash Platform?
According to Adobe Flash Platform 9 ,

6http://www.adobe.com/products/�ashplayer/
7http://www.dickbaldwin.com/tocActionScript.htm
8http://www.adobe.com/devnet/actionscript/
9http://www.adobe.com/�ashplatform/

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 4

"The Adobe Flash Platform is an integrated set of technologies surrounded by an established
ecosystem of support programs, business partners, and enthusiastic user communities. Together,
they provide everything you need to create and deliver the most compelling applications, content,
and video to the widest possible audience."

The primary delivery mechanisms for applications built with the Adobe Flash Platform are the Adobe Flash
Player 10 and Adobe Air 11 .

What is Adobe Air?
According to Adobe Air 12 ,

"The Adobe AIR runtime lets developers use proven web technologies to build rich Internet
applications that run outside the browser on multiple operating systems."

Once again, what is Flex?
Flex is an XML-based programming language that can be used to create ActionScript programs for

execution in the Flash Player . When you compile a Flex project, it is �rst converted into an ActionScript
program and the ActionScript program is compiled into a form suitable for execution by the Flash Player.

According to The Adobe Flash Builder 4 and Flex 4 Bible 13 by David Gassner,

When you compile a Flex application, your MXML code is rewritten in the background into
pure ActionScript 3. MXML can be described as a "convenience language" for ActionScript 3
that makes it easier and faster to write your applications that if you had to code completely in
ActionScript.

Easier and faster is debatable
In my opinion, as a person with many years of object-oriented programming experience, it is debatable

whether coding ActionScript programs in Flex is easier and faster than coding them in pure ActionScript.
Any program that can be coded in Flex can also be coded in pure ActionScript, but the reverse is not true.

XML, not ActionScript
In any event, the purpose of the lessons in this series is to teach XML and not to teach ActionScript

programming. (ActionScript OOP is a di�erent course that I teach at the college.) Therefore, inso-
far as practical, the lessons in this series will concentrate on Flex programming and not on ActionScript
programming.

However, to understand the di�erences between Flex 3 and Flex 4, it will sometimes be necessary to refer
to ActionScript, particularly insofar as the documentation is concerned.

4 Preview

Run the Flex program named Namespace02
If you have the Flash Player plug-in (version 10 or later) installed in your browser, click here (p. 1) to

run the program that I will explain in this lesson.
If you don't have the proper Flash Player installed, you should be noti�ed of that fact and given an

opportunity to download and install the Flash Player plug-in program.
Namespaces is an XML concept
The concept of namespaces is an XML concept. It is not a concept that is exclusive to Flex. However,

because Flex is an XML-based programming language, Flex makes heavy use of namespaces.
I explained the concept of XML namespaces in the earlier lesson titled XML - Namespaces - Flex 3 14 .

I also presented and explained a relatively simple Flex program that illustrated the use of XML namespaces
to resolve name con�icts.

10http://www.adobe.com/products/�ashplayer/?promoid=DJDWD
11http://www.adobe.com/products/air/?promoid=DJDTL
12http://www.adobe.com/products/air/?promoid=DJDTL
13http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470488956.html
14http://cnx.org/content/m34600/latest/

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 5

Some of the di�erences between Flex 3 and Flex 4
In this lesson, I will present a somewhat broader view of namespaces and will also present and explain a

program that illustrates some of the di�erences between Flex 3 and Flex 4.
In explaining the di�erences between Flex 3 and Flex 4, I will need to dig a little more deeply into the

Flex programming language than was the case in the earlier lesson.
The program that I explained in the earlier lesson was written exclusively using Flex 3. The program

that I will explain in this lesson was written exclusively in Flex 4. The new Flex 4 program approximates
the look and feel of the Flex 3 program from the earlier lesson.

5 Discussion and sample code

Two ways to create Flex projects
As I explained in the earlier lesson, Flex projects can be created using nothing more than a text editor

and a Flex software development kit (SDK) that is freely available from the Adobe website. However, to
make the development of Flex projects a little easier, Adobe previously sold a product named Flex Builder
3 and now sells a replacement product named Flash Builder 4 , which includes the Flex 3 and Flex 4
SDKs along with a visual project editor.

The project that I explained in the earlier lesson was created using Flex Builder 3. The project that I
will explain in this lesson was created using Flash Builder 4.

Free for educational use
As of June 2010, Adobe provides free copies 15 of Adobe Flash Builder 4 Standard to:

• Students, faculty and sta� of eligible educational institutions
• Software developers who are a�ected by the current economic condition and are currently unemployed

• Event attendees who receive a special promotional code at their event

5.1 Skeleton mxml code and namespaces

Skeleton mxml code for a new Flex 3 project
When you create a new Flex 3 project in Flex Builder 3 or Flash Builder 4, a skeleton of the required

mxml �le is created for you. Listing 1 shows the contents of such a skeleton mxml �le for a Flex 3 project.

Listing 1: Skeleton mxml code for a new Flex 3 project.

<?xml version="1.0" encoding="utf-8"?>

<mx:Application

xmlns:mx="http://www.adobe.com/2006/mxml"

layout="absolute">

</mx:Application>

Created using Flex Builder 3
The skeleton code shown in Listing 1 was created using Flex Builder 3, but the skeleton code for a Flex

3 project is essentially the same regardless of whether it is created using Flex Builder 3 or Flash Builder
4. (Flash Builder 4 inserts a couple of relatively insigni�cant size attributes that are not inserted by Flex
Builder 3.)

The namespace (xmlns) attribute

15http://www.adobe.com/devnet/�ex/free/index.html

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 6

In the earlier lesson, I explained the concept of the root element , and I explained that the term xmlns
is the required name for a namespace attribute. (This is true for XML in general and not just for Flex
mxml.) While it isn't necessary in general to include a namespace attribute in the root element, when
a namespace attribute is included in the root element, it becomes the default namespace for the entire
document.

Namespace is always required for a Flex project
Even though it isn't necessary to include a namespace attribute in the root element of a general XML

document, it is always necessary to include the namespace attribute shown in Listing 1 in the root element
of the main mxml document for a Flex 3 project. That is why Flex Builder 3 includes it in the skeleton code
for the project.

What does this mean?
The inclusion of the default namespace attribute shown in Listing 1 means that all elements with names

that refer to components from the standard Flex 3 library of components must be pre�xed with "mx:" .
Skeleton mxml code for a new Flex 4 project
As with a Flex 3 project, when you create a new Flex 4 project in Flash Builder 4, a skeleton of the

mxml �le is created for you. Listing 2 shows the contents of such a skeleton mxml �le for a Flex 4 project.

Listing 2: Skeleton mxml code for a new Flex 4 project.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx"

minWidth="955"

minHeight="600">
<fx:Declarations>

<!-- Place non-visual elements (e.g., services,

value objects) here -->
</fx:Declarations>

</s:Application>

More namespace attributes in the root element
If you compare Listing 2 with Listing 1, you will see that the namespace attributes in Listing 2 are

di�erent from those in Listing 1, and there are more of them in Listing 2.
Listing 1 has only one namespace attribute while Listing 2 has three namespace attributes.
Mix or match Flex components
You can use Flash Builder 4 to create projects that

• use Flex 3 exclusively
• use Flex 4 exclusively
• use a mixture of the two

Must specify compiler version for project
When you create a new project in Flash Builder 4, you must specify whether the project is to be compiled

using the Flex 3 compiler or the Flex 4 compiler.
Di�erent versions of the skeleton code
If you specify the Flex 3 compiler, the skeleton code will look like Listing 1 (with a couple of additional

sizing attributes) . For that case, you must use Flex 3 components exclusively.
If you specify the Flex 4 compiler, the skeleton code will look like Listing 2. In that case, you can use

Flex 3 components, Flex 4 components, or a mixture of the two.
What do these namespace attributes mean?

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 7

Building on what I explained earlier, the inclusion of the namespace attributes with the name "mx" in
Listing 1 and Listing 2 means that all elements with names that refer to components from the Flex 3 library
of components must be pre�xed with "mx:" . (You will see examples of this in code fragments later in
this lesson.)

The inclusion of the namespace attribute with the name "s" in Listing 2 means that all elements with
names that refer to the new components from the Flex 4 library of components must be pre�xed with "s:"
. (You will also see examples of this in code fragments later in this lesson.)

Resolution of duplicate names
The Flex 3 library and the Flex 4 library contain many components with the same names, such as

Label and Button . Therefore, the name of the component alone is not su�cient to identify which of two
components having the same name is to be used at a particular location in the program. The "mx:" pre�x
and the "s:" pre�x are the mechanisms by which you identify the correct component to the compiler.

note: For those with knowledge of ActionScript or Java programming, this is analogous to using
a package name to identify a class in those programming languages.

You can read more on the topic of required namespaces here 16 .

5.2 The sample program named Namespace02

Figure 1 shows the output from the Flex 3 program named Namespace01 that I explained in the earlier
lesson on this topic.

Output from Namespace01.

Figure 1: Output from Namespace01.

Figure 2 shows the output from the Flex 4 program named Namespace02 that I will explain in this
lesson.

16http://www.adobe.com/devnet/�ex/articles/�ex3and4_di�erences_03.html

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 8

Output from Namespace02.

Figure 2: Output from Namespace02.

Mostly default look and feel
In both programs, the top portion of the output was purposely colored red and the bottom portion

was purposely colored cyan. Otherwise, the colors, sizes, positions, and shapes of the components in both
programs were allowed to take on default values.

The project tree for the project named Namespace02
The project tree for the Flex 4 project named Namespace02 is shown in Figure 3.

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 9

Project tree for the project named Namespace02.

Figure 3: Project tree for the project named Namespace02.

A comparable image for the Flex 3 project named Namespace01 was provided in the earlier lesson.
If you compare the two, you will see that more information is displayed in the project tree for the Flex 4
project in Figure 3.

Major items of interest
For purposes of this lesson, we will be primarily interested in the following items showing in Figure 3.

Those are the items that I had to create in order to create the project.

• The �le named Namespace02.mxml
• The folder named customComps
• The �le named Button.mxml

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 10

• The �le named Label.mxml

Two buttons, three labels, etc.
As I explained in the earlier lesson, the project named Namespace01 creates a GUI with two buttons

and three labels in VBox containers with red and cyan backgrounds as shown in Figure 1.
All are mx components
Because that project was created exclusively using Flex 3, all of the components shown in Figure 1 are

Flex 3 components. I will sometimes refer to them as "mx" components because of the name of the
namespace attribute shown in Listing 1.

No VBox components in Namespace02
Because the Flex 4 program named Namespace02 was intended to replicate Namespace01 , it also

contains two buttons and three labels. However, as you will see later, they are not in VBox containers
because there is no VBox container in Flex 4. Instead, they are in containers named Group and
VGroup .

All are Spark components
Because Namespace02 was created exclusively using Flex 4, all of the components are Flex 4 compo-

nents. I will sometimes refer to them as "Spark" components on the basis of the last word in the value
of the namespace attribute named "s" in Listing 2.

note: The names "mx" and "Spark" actually derive from ActionScript package names, but an
explanation of that is beyond the scope of this lesson.

The main mxml �le for Namespace01
Listing 3 shows the code in the main mxml �le for the Flex 3 project named Namespace01 .

Listing 3: The main mxml �le for Namespace01.

<?xml version="1.0"?>
<!--

Namespace01

Illustrates the use of namespaces to avoid name conflicts.

-->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

xmlns:MyComps="customComps.*"

backgroundColor="#FFFF00">

<!--Add a standard VBox container-->
<mx:VBox backgroundColor="#FF0000">

<mx:Label text="Standard Label"

color="#FFFF00"

fontSize="12"

fontWeight="bold"/>
<mx:Button label="Standard Button" />

<MyComps:Label id="customLabel"/>
<MyComps:Button id="customButton"/>

</mx:VBox>

</mx:Application>

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 11

The Application element
I will explain mxml syntax in more detail in future lessons, so I'm not going to go into syntax issues

at this point in time. Su�ce it to say that the Application element in Listing 3 represents the entire
program. The behavior as well as the look and feel of the program is de�ned by the attributes and the
content of the Application element. Everything in the program is part of the attributes or the content of
the Application element.

An mx:VBox element
From what you already know about XML, you can see that an element named mx:VBox is part of

the content of the Application element. Very brie�y, in Flex, an mx:VBox element is a container
element that can contain other elements. Couched in visual terms such as Figure 1, an mx:VBox object
can contain other components such as labels and buttons.

Note that the mx:VBox element name has an mx pre�x, meaning that it represents a component
from the Flex 3 library as explained earlier.

The backgroundColor attribute of the mx:VBox element
Also note that the mx:VBox element has an attribute named backgroundColor with a value of

"#FF0000" . In a future lesson, I will explain that this is a hexadecimal value that represents the color red
at maximum intensity. This attribute produces the red background color that you see in the upper portion
of Figure 1.

note: The lower portion of Figure 1 also has a red background color, but it is covered by another
mx:VBox element with an opaque cyan background color.

The backgroundColor attribute for the Application element
While we are discussing background colors, it is also worth mentioning that the application element

has an attribute named backgroundColor with a value of "#FFFF00" . This is the hexadecimal
value for yellow and causes the background color of the entire Flash Player window to be yellow.

Contents of the mx:VBox element
The mx:VBox element contains the following four elements:

• mx:Label
• mx:Button
• MyComps:Label
• MyComps:Button

In the earlier lesson, I explained that the �rst two of these four elements represent components from the
standard Flex 3 library. (Hence the "mx:" pre�x.) The last two represent custom components that were
constructed using components from the standard Flex 3 library.

The MyComps:Button element
If you go back to the earlier lesson 17 and examine the code for the custom component named My-

Comps:Button , you will see that it has an mx:Label and an mx:Button in an mx:VBox container
with a backgroundColor value of "#00FFFF" (cyan) . This produces the cyan rectangle containing the
label and the button in the bottom portion of Figure 1.

The main mxml �le for Namespace02
The main mxml �le for the Flex 4 project named Namespace02 is shown in Listing 4.

Listing 4: The main mxml �le for Namespace02.

<?xml version="1.0" encoding="utf-8"?>

<!--File: Namespace02.mxml

17http://cnx.org/content/m34600/latest/#Listing_4

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 12

This is a Flex 4 version of the Flex 3 program

named Namespace01-->

<!--Declare a namespace as the folder named customComps,

which contains a custom label component and a second

custom component consisting of a Spark Label and a

Spark Button. Then declare the three namespaces required

by Flex 4. Finally cause the background to be yellow.-->
<s:Application xmlns:MyComps="customComps.*"

xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx"

backgroundColor="0xFFFF00">

<!--Put a Spark Label and a Spark Button along with two

custom components in a Spark Group with a red background

color.-->
<s:Group horizontalCenter="0" verticalCenter="0">

<!--Create a red rectangle to serve as the background

color for the Group-->
<s:Rect width="100%" height="100%">

<s:fill>
<s:SolidColor color="0xFF0000" />

</s:fill>
</s:Rect>

<!--Add a Spark VGroup to contain the components and

cause them to be laid out vertically.-->
<s:VGroup>

<!--Add two Spark components to the VGroup-->
<s:Label text="Spark Label"

color="#FFFF00"

fontSize="12"

fontWeight="bold"/>
<s:Button label="Spark Button" />

<!--Add two custom components to the VGroup-->
<MyComps:Label id="customLabel"/>
<MyComps:Button id="customButton"/>

</s:VGroup>

</s:Group>

</s:Application>

Lots of comments
As you can see, I included lots of comments in Listing 4 in an attempt to make it as self-explanatory as

possible.
In this lesson, I will concentrate on the di�erences between this Flex 4 project and the Flex 3 project

named Namespace01 that arise from creating the two projects using di�erent versions of Flex.

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 13

Order of attributes is not important
Let me begin by explaining that in XML, the order in which you write the attributes for an element

doesn't matter so long as they are all there with the correct syntax, the correct names, and the correct
values.

More and di�erent namespace attributes
As I explained earlier, a Flex 4 project often has three required namespace attributes and almost always

has two. (Because I didn't use any mx components in this program, I could have removed the namespace
attribute named mx from Listing 4.)

Other than the namespace attributes, the application element in Listing 4 has the same attribute
names and values as the application element in Listing 3.

No VBox element in Namespace02
The next thing to notice is that there is no mx:VBox element in Listing 4. Instead, there is an

s:Group element (a Flex 4 Spark component) that replaces the mx:VBox element and serves as a
container for the labels and the buttons.

No backgroundColor attribute
The s:Group element has two positioning attributes that cause it to appear in the center of the Flash

Player window, but it does not have an attribute named backgroundColor . Like many of the Spark
components, and unlike many of the mx components, the s:Group element does not have built-in attributes
that are used to control its appearance. Instead, other ways must be found to control the appearance of
many Spark components.

A red rectangle
In this case, Listing 4 causes the s:Group element to appear to have a red background by causing it

to contain a red rectangle of exactly the right dimensions to completely �ll the s:Group element. This
produces the red background color in the upper portion of Figure 2.

note: As with Figure 1, the lower portion of Figure 2 also has a red background color, but it is
covered by another smaller rectangle with an opaque cyan color.

Add an s:VGroup container
Then Listing 4 adds a Spark s:VGroup container to serve essentially the same purpose as the

mx:VBox container in Listing 3 (except that it doesn't control the red background color) . The following
elements are added to the s:VGroup element in Listing 4 In a manner very similar to Listing 3:

• s:Label
• s:Button
• MyComps:Label
• MyComps:Button

The �rst two elements in the above list are Spark elements having similar characteristics to the mx elements
having the same names.

The last two elements in the above list are custom components having similar characteristics to the
custom components having the same names in the earlier program.

Contents of the �le named Label.mxml
The contents of the custom component �le named Label.mxml are shown in Listing 5.

Listing 5: Contents of the �le named Label.mxml.

<?xml version="1.0" encoding="utf-8"?>

<!--Create a custom label by putting a Spark Label in

a Spark Group-->
<s:Group xmlns:MyComps="customComps.*"

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 14

xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx">

<s:Label

text="Custom Label"

color="#FFFF00"

fontSize="12"

fontWeight="bold"/>

</s:Group>

Contents of the �le named Button.mxml
The contents of the custom component �le named Button.mxml are shown in Listing 6.

Listing 6: Contents of the �le named Button.mxml.

<?xml version="1.0" encoding="utf-8"?>

<!--Create a custom component by putting a Spark Label

and a Spark Button in a Spark VGroup inside of a Spark

Group with a Cyan background color.-->
<s:Group xmlns:MyComps="customComps.*"

xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx">

<!--Fill the entire group with a cyan rectangle-->
<s:Rect width="100%" height="100%">

<s:fill>
<s:SolidColor color="0x00FFFF" />

</s:fill>
</s:Rect>

<!--Put a Spark VGroup in the Group and put a Spark

Label and a Spark Button in the VGroup-->
<s:VGroup>

<s:Label

text="Custom Component."

color="#000000"

fontSize="12" fontWeight="bold"/>

<s:Button

label="Button"/>
</s:VGroup>

</s:Group>

No further explanation needed
Assuming that you understand the contents of the �les named Label.mxml and Button.mxml in

the Flex 3 program in the earlier lesson, and assuming that you understood the explanation of the di�erences
between the two main mxml �les given above, the comments in Listing 5 and Listing 6 should serve as a
su�cient explanation of the code in Listing 5 and Listing 6.

http://cnx.org/content/m34602/1.1/



OpenStax-CNX module: m34602 15

6 Run the program

I encourage you to run (p. 1) this program from the web. Then copy the code from Listing 4 through Listing
6. Use that code to create your own projects. Compile and run the projects. Experiment with the code,
making changes, and observing the results of your changes. Make certain that you can explain why your
changes behave as they do.

7 Resources

I will publish a list containing links to Flex resources as a separate document. Search for Flex Resources in
the Connexions search box.

8 Miscellaneous

This section contains a variety of miscellaneous materials.

note: Housekeeping material

• Module name: XML - Namespaces - Flex 4
• Files:

· Flex0086a\Connexions\FlexXhtml0086a.htm

note: PDF disclaimer: Although the Connexions site makes it possible for you to download a
PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

-end-

http://cnx.org/content/m34602/1.1/


