
Connexions module: m34633 1

Handling Slider Change Events in

Flex 3 and Flex 4
∗

Richard Baldwin

This work is produced by The Connexions Project and licensed under the

Creative Commons Attribution License †

Abstract

Learn how to write inline event handler code to handle slider change events.

note: Click SliderChangeEvent01 1 , SliderChangeEvent02 2 , and SliderChangeEvent03 3 to
run the Flex programs from this lesson. (Click the "Back" button in your browser to return to
this page.)

1 Table of Contents

• Preface (p. 2)

· General (p. 2)
· Viewing tip (p. 2)

* Figures (p. 2)
* Listings (p. 2)

· Supplemental material (p. 2)

• General background information (p. 2)
• Preview (p. 3)
• Discussion and sample code (p. 9)

· The Flex 3 project named SliderChangeEvent01 (p. 9)
· The hybrid Flex3-4 project named SliderChangeEvent02 (p. 17)
· The Flex 4 project named SliderChangeEvent03 (p. 23)

• Run the programs (p. 23)
• Resources (p. 23)
• Complete program listings (p. 23)
• Miscellaneous (p. 25)

∗Version 1.1: Jun 18, 2010 4:58 pm -0500
†http://creativecommons.org/licenses/by/3.0/
1http://cnx.org/content/m34633/latest/SliderChangeEvent01.html
2http://cnx.org/content/m34633/latest/SliderChangeEvent02.html
3http://cnx.org/content/m34633/latest/SliderChangeEvent03.html

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 2

2 Preface

2.1 General

This lesson is part of a series of tutorial lessons dedicated to programming with Adobe Flex. The material
in this lesson applies to both Flex 3 and Flex 4.

2.2 Viewing tip

I recommend that you open another copy of this document in a separate browser window and use the
following links to easily �nd and view the �gures and listings while you are reading about them.

2.2.1 Figures

• Figure 1 (p. 4) . Browser image at startup for the Flex 3 project.
• Figure 2 (p. 6) . A toolTip on the slider.
• Figure 3 (p. 8) . Changing the height of the image.
• Figure 4 (p. 10) . Flex Builder 3 Components tab exposed.
• Figure 5 (p. 11) . Drag controls onto the Flex Builder 3 Design tab.
• Figure 6 (p. 13) . The Flex Builder 3 Properties tab exposed.
• Figure 7 (p. 18) . Browser image at startup for the hybrid project.
• Figure 8 (p. 20) . Flex Builder 4 Components tab exposed.
• Figure 9 (p. 22) . Drag controls onto the Flash Builder 4 Design tab.

2.2.2 Listings

• Listing 1 (p. 12) . XML code before setting properties for SliderChangeEvent01.
• Listing 2 (p. 14) . Beginning of XML code for SliderChangeEvent01.
• Listing 3 (p. 15) . Create and condition the slider.
• Listing 4 (p. 16) . Import an image.
• Listing 5 (p. 22) . Mxml code for the layout shown in Figure 9.
• Listing 6 (p. 23) . Complete listing of SliderChangeEvent01.
• Listing 7 (p. 24) . Complete listing of SliderChangeEvent02.
• Listing 8 (p. 25) . Complete listing of SliderChangeEvent03.

2.3 Supplemental material

I also recommend that you study the other lessons in my extensive collection of online programming tutorials.
You will �nd a consolidated index at www.DickBaldwin.com 4 .

3 General background information

If you learn how to program using ActionScript 3, you will probably integrate large amounts of ActionScript
code into your Flex projects to provide complex event handling. In the meantime, it is possible to provide
simple event handlers in Flex by embedding a very small amount of ActionScript code in your Flex code. I
will illustrate and explain that capability in this lesson.

4http://www.dickbaldwin.com/toc.htm

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 3

4 Preview

I encourage you to run (p. 1) the online version of the programs from this lesson before continuing.
Three Flex projects

I will present and explain three Flex projects in this lesson. The �rst project is named Slider-

ChangeEvent01 . This project was �rst developed using Flex Builder 3 and later developed using the
Flex 3 compiler and Flash Builder 4. The results were essentially the same in both cases. This project uses
classes from the Flex 3 (mx) library exclusively. (The screen shots shown in Figure 4, Figure 5, and Figure
6 are from Flex Builder 3.)

The second project

The second project is named SliderChangeEvent02 . This project was developed using the Flex 4
compiler and Flash Builder 4. This is a hybrid project that uses classes from both the Flex 3 (mx) library
and the Flex 4 (spark) library. The behavior of this project is similar to the behavior of the other project,
but they look di�erent in several ways that I will explain later.

The third project

The third project is named SliderChangeEvent03 . This project is a modi�cation of the hybrid
project in which the classes used are drawn exclusively from the Flex 4 spark library.

Order of upcoming explanations

I will explain the Flex 3 project named SliderChangeEvent01 in detail. Then I will explain the
di�erences between that project and the hybrid project named SliderChangeEvent02 . Finally, I will
explain the di�erences between that project and the project named SliderChangeEvent03 .

SliderChangeEvent01 output image at startup

The project named SliderChangeEvent01 starts running in Flash Player with the image shown in
Figure 1 appearing in the browser.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 4

Browser image at startup for the Flex 3 project.

Figure 1: Browser image at startup for the Flex 3 project.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 5

The image that you see in Figure 1 consists of two Flex 3 Label controls, one Flex 3 HSlider control,
and one Flex 3 Image control arranged vertically and centered in the browser window.

The Application container

All XML documents must have a root element. The root of a Flex 3 application is a container element
that is often called the Application container. (You can learn all about the Application container
class at Adobe Flex 3.5 Language Reference 5 .)

Brie�y, the Application container, (which corresponds to the root element in the Flex XML code) ,
holds all other containers and components.

Vertical layout

By default, the Flex 3 Application container lays out all of its children vertically as shown in Figure
1. (As you will see later, this is not the case for the Flex 4 Application container.) The default vertical
layout occurs when the layout attribute is not speci�ed as is the case in this application. According to
the Adobe Flex 3.5 Language Reference 6 , the layout property:

"Speci�es the layout mechanism used for this application. Applications can use "vertical", "hor-
izontal", or "absolute" positioning. Vertical positioning lays out each child component vertically
from the top of the application to the bottom in the speci�ed order. Horizontal positioning lays
out each child component horizontally from the left of the application to the right in the speci�ed
order. Absolute positioning does no automatic layout and requires you to explicitly de�ne the
location of each child component. The default value is vertical."

A toolTip on the slider

If you point to the slider with your mouse, a tool tip showing the word Height will appear as shown in
Figure 2.

5http://livedocs.adobe.com/�ex/3/langref/index.html
6http://livedocs.adobe.com/�ex/3/langref/index.html

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 6

A toolTip on the slider.

Figure 2: A toolTip on the slider.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 7

The slider's thumb

The little triangle that you see on the slider in these images is often referred to as the slider's thumb .
As you will see later, the position of the thumb is intended to represent the height of the image below

the slider. The left end of the slider represents a height of 100 pixels and the right end represents a height
of 250 pixels (which just happens to be the actual height of the raw image) .

Changing the height of the image

If you grab the thumb with the mouse and move it to the left or the right, two obvious visual e�ects
occur. The �rst is that the value represented by the current position of the thumb is displayed above the
thumb as shown in Figure 3.

(As you will see later, the value is also displayed in a Flex 4 application, but by default the
appearance is white numerals on a black background.)

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 8

Changing the height of the image.

Figure 3: Changing the height of the image.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 9

The second visual e�ect

The second visual e�ect of moving the thumb is that the height of the image changes to the value
represented by the position of the thumb on the slider.

(An Image object has a property named maintainAspectRatio . By default, the value of
this property is true. Therefore, when the height is changed, the width changes in a proportional
manner.)

Note that the upper-left corner of the image remains anchored to the same point as the height of the image
changes as shown in Figure 3.

5 Discussion and sample code

5.1 The Flex 3 project named SliderChangeEvent 01

Creating the layout

Once you create your new Flex 3 Project, there are at least three ways that you can create your layout
using Flex Builder 3:

1. Select the Design tab in the upper-middle panel of the IDE (see Figure 5) and drag your containers,
controls, and other components from the Components tab onto your design window.

2. Select the Source tab in Figure 5 and write the raw XML code that de�nes your layout.
3. A combination of 1 and 2 above

Expose the components tab

When you select the Design tab in the upper-middle window of the IDE, the lower-left window changes
to the appearance shown in Figure 4 with the Flex 3 (mx) Components tab exposed.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 10

Flex Builder 3 Components tab exposed.

Figure 4: Flex Builder 3 Components tab exposed.
http://cnx.org/content/m34633/1.1/



Connexions module: m34633 11

The list of available components that you see in Figure 4 also appears when you create a new
project in Flash Builder 4 and specify the use of the Flex 3 compiler.

A list of available components

Although they aren't all shown in Figure 4 due to space limitations, the Flex Builder 3 Components

tab lists all of the components that you can use in your Flex application grouped into the following categories:

• Custom
• Controls
• Layout
• Navigators
• Charts

Expose the design window

Selecting the Design tab mentioned above also exposes the Flex Builder 3 design window shown in
Figure 5.

Drag controls onto the Flex Builder 3 Design tab.

Figure 5: Drag controls onto the Flex Builder 3 Design tab.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 12

A similar design window is exposed when you create a new project in Flash Builder 4 specifying
the Flex 3 compiler and then select the Design tab. The purpose is the same but some of
the items at the top of the design window in Flash Builder 4 are di�erent.

Drag components onto the Design tab

You can drag components from the Components tab shown in Figure 4 onto the Design tab shown
in Figure 5 to create your layout in the Flex Builder 3 design mode or in the Flash Builder 4 design mode.
As you do that, the corresponding XML code is automatically generated for you.

For example, Figure 5 shows the results of dragging two Label controls, one HSlider control, and
one Image control from the Components tab of Figure 4 to the Design tab of Figure 5. (No attempt
has been made to set property values on any of the controls shown in Figure 5.) .

XML code before setting properties

If you select the Source tab at this point, you will see the XML code shown in Listing 1.

Listing 1: XML code before setting properties for SliderChangeEvent01.

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Label text="Label"/>
<mx:Label text="Label"/>
<mx:HSlider/>
<mx:Image/>

</mx:Application>

Compile and run

As you can see, the XML code in Listing 1 is pretty sparse. You could compile and run the application
at this point. All you would see would be two labels each containing the text Label and a slider covering
the default numeric range from 0 to 10.

Put some meat on the bones

We will need to put some meat on the bones of this skeleton mxml code in order to create our Flex
application. We can accomplish that by setting attribute values that correspond to properties of the controls.

Setting attribute values

Once again, we have three choices:

1. Go hardcore and edit the XML code shown in Listing 1 to add the necessary attributes.
2. Stay in Design mode, select each component in the Design tab, and use the Flex Properties

tab shown in Figure 6 to set the properties on that component.
3. A combination of 1 and 2 above.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 13

The Flex Builder 3 Properties tab exposed.

Figure 6: The Flex Builder 3 Properties tab exposed.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 14

The Flex Properties tab

When you select the Design tab shown in Figure 5, the Flex Properties tab shown in Figure 6
appears in the bottom-right of the IDE.

The appearance of the Flex Properties tab depends on which component is selected in the Design

tab. Figure 5 shows one of the Label controls selected, and Figure 6 shows the Flex Properties tab
corresponding to a Label control.

You will see a very similar properties tab if you create a new Flash Builder 4 project and specify
use of the Flex 3 compiler. Some of the items are in di�erent locations than Figure 6 but it
appears that the Flash Builder 4 properties tab has the same items for a Flex 3 project.

A variety of user input controls

The Flex Properties tab contains a variety of user input controls that allow you to specify values for
many of the commonly used properties that are allowed for the selected component.

Note, however, that the documentation for the Label control lists many properties that are not
supported by the Flex Properties tab shown in Figure 6. You can increase the number of properties
shown in the tab by selecting one of the controls at the top of the tab that converts the display into an
alphabetical list of properties. However, even this doesn't seem to show all of the properties de�ned by and
inherited by some components.

If you need to set properties that are not supported by the Flex Properties tab, you probably have
no choice but to select the Source tab shown in Figure 5 and write mxml code for those properties.

Will explain the code in fragments

I will explain the code for this Flex application in fragments. A complete listing of the application is
provided in Listing 6 near the end of the lesson.

Beginning of XML code for SliderChangeEvent01

The primary purpose of this application is to illustrate the use of inline event handling for Flex 3 slider
change events.

The application begins in Listing 2 which shows the beginning of the Application element and the
two complete Label elements shown at the top of Figure 1.

Listing 2: Beginning of XML code for SliderChangeEvent01.

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Label text="Put your name here" fontSize="16"

fontWeight="bold"/>

<mx:Label text="Image Height in Pixels"

fontWeight="bold" fontSize="14"/>

Make it easy - drag and drop

The two Label elements were created by dragging Label controls from the Components tab
shown in Figure 4 onto the Design tab shown in Figure 5. Then the attribute values were set using the
Flex Properties tab shown in Figure 6.

The attributes shown in Listing 2 represent common properties of a text label and shouldn't require
further explanation.

Create and condition the slider

Listing 3 adds a horizontal slider (HSlider) control to the application and sets the attributes that control
both its appearance and its behavior.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 15

Listing 3: Create and condition the slider.

<mx:HSlider minimum="100" maximum="250" value="250"

toolTip="Height"

change="myimg.height=event.currentTarget.value"

liveDragging="true" />

The slider is a little more complicated than a label and deserves a more thorough explanation.
The numeric properties

Recall that a slider represents a range of numeric values. The position of the thumb at any instant in
time selects a value from that range. The following three attributes shown in Listing 3 deal with the slider
and its numeric range:

• minimum - the numeric value represented by the left end of a horizontal slider.
• maximum - the value represented by the right end of a horizontal slider.
• value - the value that speci�es the initial position of the thumb when the slider is constructed and

�rst presented in the application's window.

The toolTip property

As you have probably already guessed, the value of the toolTip property speci�es the text that appears
in the tool tip when it is visible as shown in Figure 2.

The change property

This is where thing get a little more interesting. As the user moves the thumb to the left or right, the
slider �res a continuous stream of change events. You might think of this as the slider yelling out
"Hey, the position of my thumb has been changed." over and over as the thumb is being moved. (Also see
the discussion of the liveDragging (p. 16) property later.)

An event handler

The value that is assigned to the change attribute in Listing 3 is often referred to as an event handler
. This value speci�es what the application will do each time the slider �res a change event.

Three ways to handle events in Flex

There are at least three ways to handle event noti�cations in Flex:

• Registering an event handler in mxml
• Creating an inline event handler in the mxml de�nition
• Registering an event listener through ActionScript

The XML code in Listing 3 uses the inline approach.
The inline approach

The advantage of using the inline approach, (at least insofar as my Introduction to XML , students
are concerned) , is that it doesn't require you to create a Script element within the mxml or to create a
separate ActionScript �le.

Handling the slider's change event

Now consider the code that begins with the word change in Listing 3. The code within the quotation
marks can be a little hard to explain, but I will give it a try. (The code in quotation marks is actually an
ActionScript code fragment.)

Think of it this way

There is a Flex/ActionScript class named Event . The reference to event in Listing 3 is a reference
to an object of the Event class that comes into being each time the slider �res a change event .

The Event object encapsulates a property named currentTarget , which is described in the Flex 3
documentation as follows:

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 16

"The object that is actively processing the Event object with an event listener. For example, if
a user clicks an OK button, the current target could be the node containing that button or one
of its ancestors that has registered an event listener for that event."

The currentTarget is the slider

In this application, the value of currentTarget points to the slider which is �ring change events as
the user moves the thumb.

The value property of an HSlider object

The slider is an object of the HSlider class, which has a property named value . The value

property contains the current position of the thumb and is a number between the minimum and maximum
property values.

Get the current value of the thumb

Therefore, each time the slider �res a change event, the code on the right side of the assignment operator
within the highlighted quotation marks in Listing 3 gets the numeric value that indicates the current position
of the thumb.

Cause the image to be resized

This value is assigned to the height property of the image, causing the overall size of the image to be
adjusted, if necessary, to match the current position of the slider's thumb. (I could go into more detail as
to the sequence of events that causes the size of the image to change, but I will leave that as an exercise for
the student.)

The liveDragging property

That leaves one more attribute or property for us to discuss in Listing 3: liveDragging . This one is
much easier to understand.

The Flex 3 documentation has this to say about the liveDragging property:

"Speci�es whether live dragging is enabled for the slider. If false, Flex sets the value and values
properties and dispatches the change event when the user stops dragging the slider thumb. If
true, Flex sets the value and values properties and dispatches the change event continuously as
the user moves the thumb. The default value is false."

If liveDragging is false...

If you were to modify the code in Listing 3 to cause the value of the liveDragging property to be
false (or simply not set the attribute value to true) , the slider would only �re change events each time
the thumb stops moving (as opposed to �ring a stream of events while the thumb is moving) . This, in
turn, would cause the size of the image to change only when the thumb stops moving instead of changing
continuously (p. 15) while the thumb is moving.

An Image control

The Flex 3 documentation tells us:

The Image control lets you import JPEG, PNG, GIF, and SWF �les at runtime. You can also
embed any of these �les and SVG �les at compile time by using @Embed(source='�lename').

The primary output that is produced by compiling a Flex application is an swf �le that can be executed in
Flash Player.

The documentation goes on to explain that by using @Embed , you can cause resources such as images
to be embedded in the swf �le.

The advantage to embedding is that embedding the resource eliminates the requirement to distribute the
resource �les along with the swf �les. The disadvantage is that it causes the swf �le to be larger.

Import an image

Listing 4 imports an image from the �le named myimage.jpg that is located in the src folder of the
project tree. This image is embedded in the swf �le when the Flex application is compiled.

Listing 4: Import an image.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 17

<mx:Image id="myimg" source="@Embed('myimage.jpg')"

height="250">
</mx:Image>

</mx:Application>

The id property

Setting the id property on the image to myimg makes it possible to refer to the image in the
change-event code in Listing 3.

(Note that there is no requirement to set the value of the id property to be the same as the
name of the image �le as was done in Listing 4.)

The height property

Setting the height property of the image to 250 pixels in Listing 4 causes the image height to be 250
pixels when it is �rst displayed as shown in Figure 1.

The end of the application

Listing 4 contains the closing tag for the Application element signaling the end of the Flex 3 application
named SliderChangeEvent01 .

5.2 The hybrid Flex3-4 project named SliderChangeEvent02

The mxml project code

The mxml code for this project is shown in its entirety in Listing 7.
If you examine this code you will see that:

• It uses a Flex 4 spark s:Application element instead of a Flex 3 mx:Application element.
• It declares the standard set of Flex 4 namespaces.
• It uses a spark s:VGroup element as the container for the following Flex 3 components. (Note that

the Flex 3 project in Listing 6 doesn't require another container in addition to the mx:Application

container.) :

· mx:Label

· mx:Label

· mx:HSlider

· mx:Image

Otherwise, the mxml code for this project is the same as the code for the Flex 3 project shown in Listing 6.
The mixture of spark and mx components causes this to be a hybrid Flex 3-4 project.

Visual appearance of the project

If you run (p. 1) the online version of the project named SliderChangeEvent02 , you should see an
initial screen display similar to Figure 7.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 18

Browser image at startup for the hybrid project.

Figure 7: Browser image at startup for the hybrid project.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 19

Compare with the Flex 3 project

By comparing this screen output for the hybrid project with the screen output for the Flex 3 project in
Figure 1, you can immediately spot several signi�cant di�erences:

• The background is white instead of gray.
• The labels, the slider, and the image are not centered horizontally in the browser window.
• The appearance of the thumb on the slider is a circle instead of a triangle.

Behavior of the project

If you move the slider with the mouse, you will see that the behavior is essentially the same as the Flex
3 version of the project, including the display of a tool tip as shown in Figure 2 and the display of the slider
value as shown in Figure 3.

The spark s:Application element

The Flex 4 spark s:Application element di�ers from the Flex 3 mx:Application element in several
ways including the following:

• Default layout: Unlike the mx:Application element, the s:Application element does not
have a default vertical (p. 5) layout. By default, all components placed in the s:application element
are placed in the upper-left corner. (The s:VGroup container element was used in Listing 7 to
resolve this issue.)

• Default background color: The default background color of the s:Application element is
white, whereas the default background color of the mx:Application element is gray.

• Horizontal positioning: Unlike the mx:Application element which centers it components hori-
zontally by default, the default position of components placed in the s:Application element is the
upper-left corner.

The spark s:VGroup element

As shown in Listing 7, the s:VGroup element can be used to arrange the components in a vertical
sequence from top to bottom. However, placing components in an s:VGroup element does not cause them
to be centered horizontally. Instead, by default, the components end up on the left side of the container as
shown in Figure 7. If you want the components to be centered, you must write additional code to cause that
to happen.

The Flash Builder 4 Components tab

When you create a new Flex project in Flash Builder 4, if you specify the use of the Flex 3 compiler, the
Components tab in the resulting IDE will look like Figure 4. However, if you specify the Flex 4 compiler
when you create the new project, the Components tab will look like Figure 8.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 20

Flex Builder 4 Components tab exposed.

Figure 8: Flex Builder 4 Components tab exposed.
http://cnx.org/content/m34633/1.1/



Connexions module: m34633 21

Numerous di�erences

If you compare Figure 8 with Figure 4, you will see numerous di�erences between the two lists. Some of
the names are the same and some of the names are di�erent. Even though some of the names are the same,
most of the components that you see in Listing 8 are Flex 4 spark components and the components that you
see in Figure 4 are Flex 3 mx components and they are represented by di�erent classes in the class library.

However, as you will see later, the Image component in the Flex 4 Component list is actually
a Flex 3 mx component. That may also be the case for some of the other components as well.

Same name doesn't guarantee same appearance or same behavior

While the appearance and behavior of a Flex 4 spark component may be the same as the appearance
and behavior of a Flex 3 mx component with the same name, there is no guarantee that will be the case.
They are entirely di�erent components and the only way you can be sure is to study the documentation.

As you saw earlier, the appearance of an mx:HSlider used inside an s:Application element
is di�erent from an mx:HSlider used inside an mx:Application element. Therefore, if
the appearance and behavior of the components in your project are really critical, you should
probably avoid mixing Flex 3 and Flex 4 components.

No drag-and-drop support for hybrid projects

Another rami�cation of the fact that the components in Figure 8 are spark components is that you cannot
create hybrid projects using drag-and-drop programming alone. If you drag the components in Figure 8 into
the design pane of Flash Builder 4, your project will be populated with Flex 4 spark components. If you
want the project to be populated with Flex 3 mx components, you will have to manually edit the mxml code
to accomplish that. That may be another reason to avoid hybrid projects.

Drag-and-drop results

Figure 9 shows the results of dragging one VGroup layout, two Label controls, one HSlider

control, and one Image control from the Flash Builder 4 Components panel into the Design panel.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 22

Drag controls onto the Flash Builder 4 Design tab.

Figure 9: Drag controls onto the Flash Builder 4 Design tab.

Compare Figure 9 with Figure 5 to see the di�erences in background color and layout.
Mxml code for the layout shown in Figure 9

Listing 5 shows the Flex 4 mxml code that corresponds to the layout shown in Figure 9.

Listing 5: Mxml code for the layout shown in Figure 9.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx"

minWidth="955" minHeight="600">
<fx:Declarations>

<!-- Place non-visual elements (e.g., services,

value objects) here -->

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 23

</fx:Declarations>
<s:VGroup x="0" y="0" width="200" height="200">

<s:Label text="Label"/>
<s:Label text="Label"/>
<s:HSlider/>
<mx:Image/>

</s:VGroup>
</s:Application>

Mostly Flex 4 spark components
The most important thing to note about Listing 5 is that the VGroup , Label , and HSlider

components that were dragged from the Component tab shown in Figure 8 into the Design panel
shown in Figure 9 are all declared using the spark (s) namespace. Curiously, however, the Image control
shows up in the code as mx:Image instead of s:Image .

5.3 The Flex 4 project named SliderChangeEvent03

Updating the mxml code in Listing 5 by applying the properties from Listing 7 to the Label and HSlider

components produces the complete Flex 4 project named SliderChangeEvent03 shown in Listing 8.
If you run (p. 1) the online versions of SliderChangeEvent0 2 and SliderChangeEvent03 side-

by-side in di�erent browser windows, you will probably notice a few subtle di�erences in the look and feel
of the two programs. Here are some of the di�erences that I have noticed:

• There is less space between the labels and the slider in the Flex 4 version.
• There is less space between the edge of the Flash window and the top and left ends of the labels and

the slider in the Flex 4 version.
• The overall length of the slider is shorter in the Flex 4 version.
• The treatment of the little popup window that shows the value of the slider is di�erent between the

two. It has black letters on a cream-colored background in the hybrid version as in Figure 3, but it
has white letters on a black background in the Flex 4 version.

6 Run the programs

I encourage you to run (p. 1) the online versions of the programs from this lesson. Then copy the code from
Listing 6, Listing 7, and Listing 8. Use that code to create Flex projects of your own. Compile and run
your projects. Experiment with the code, making changes, and observing the results of your changes. Make
certain that you can explain why your changes behave as they do.

7 Resources

I will publish a list containing links to Flex resources as a separate document. Search for Flex Resources in
the Connexions search box.

8 Complete program listing

Complete listings of the programs discussed in this lesson are shown in Listing 6, Listing 7, and Listing 8
below.

Listing 6: Complete listing of SliderChangeEvent01.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 24

<?xml version="1.0" encoding="utf-8"?>

<!--

SliderChangeEvent01

Illustrates the use of inline event handling for slider

change events.

-->

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Label text="Put your name here" fontSize="16"

fontWeight="bold"/>

<mx:Label text="Image Height in Pixels"

fontWeight="bold" fontSize="14"/>

<mx:HSlider minimum="100" maximum="250" value="250"

toolTip="Height"

change="myimg.height=event.currentTarget.value"

liveDragging="true" />

<mx:Image id="myimg" source="@Embed('myimage.jpg')"

height="250">
</mx:Image>

</mx:Application>

Listing 7: Complete listing of SliderChangeEvent02.

<?xml version="1.0" encoding="utf-8"?>
<s:Application

xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx">
<s:VGroup>

<mx:Label

text="Put your name here" fontSize="16"

fontWeight="bold"/>

<mx:Label

text="Image Height in Pixels"

fontWeight="bold" fontSize="14"/>

<mx:HSlider

minimum="100"

maximum="250"

value="250"

toolTip="Height"

change="myimg.height=event.currentTarget.value"

liveDragging="true" />

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 25

<mx:Image

id="myimg" source="@Embed('myimage.jpg')"

height="250">
</mx:Image>

</s:VGroup>
</s:Application>

Listing 8: Complete listing of SliderChangeEvent03.

<?xml version="1.0" encoding="utf-8"?>
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="library://ns.adobe.com/flex/mx"

minWidth="955" minHeight="600">

<s:VGroup x="0" y="0" width="200" height="200">
<s:Label

text="Put your name here" fontSize="16"

fontWeight="bold"/>
<s:Label

text="Image Height in Pixels"

fontWeight="bold" fontSize="14"/>
<s:HSlider

minimum="100"

maximum="250"

value="250"

toolTip="Height"

change="myimg.height=event.currentTarget.value"

liveDragging="true" />
<mx:Image id="myimg" source="@Embed('myimage.jpg')"

height="250"/>
</s:VGroup>

</s:Application>

9 Miscellaneous

note: Housekeeping material

• Module name: Handling Slider Change Events in Flex 3 and Flex 4
• Files:

· Flex0104\Flex0104.htm
· Flex0104\Connexions\FlexXhtml0104.htm

note: PDF disclaimer: Although the Connexions site makes it possible for you to download a
PDF �le for this module at no charge, and also makes it possible for you to purchase a pre-printed
version of the PDF �le, you should be aware that some of the HTML elements in this module may
not translate well into PDF.

http://cnx.org/content/m34633/1.1/



Connexions module: m34633 26

-end-

http://cnx.org/content/m34633/1.1/


