Skip to content Skip to navigation Skip to collection information

OpenStax-CNX

You are here: Home » Content » Fundamentals of Mathematics » Multiplication of Fractions

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Endorsed by Endorsed (What does "Endorsed by" mean?)

This content has been endorsed by the organizations listed. Click each link for a list of all content endorsed by the organization.
  • CCQ display tagshide tags

    This collection is included in aLens by: Community College of Qatar

    Comments:

    "Used as supplemental materials for developmental math courses."

    Click the "CCQ" link to see all content they endorse.

    Click the tag icon tag icon to display tags associated with this content.

  • College Open Textbooks display tagshide tags

    This collection is included inLens: Community College Open Textbook Collaborative
    By: CC Open Textbook Collaborative

    Comments:

    "Reviewer's Comments: 'I would recommend this text for a basic math course for students moving on to elementary algebra. The information in most chapters is useful, very clear, and easily […]"

    Click the "College Open Textbooks" link to see all content they endorse.

    Click the tag icon tag icon to display tags associated with this content.

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Featured Content display tagshide tags

    This collection is included inLens: Connexions Featured Content
    By: Connexions

    Comments:

    "Fundamentals of Mathematics is a work text that covers the traditional topics studied in a modern prealgebra course, as well as topics of estimation, elementary analytic geometry, and […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • UniqU content

    This collection is included inLens: UniqU's lens
    By: UniqU, LLC

    Click the "UniqU content" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Multiplication of Fractions

Module by: Wade Ellis, Denny Burzynski. E-mail the authorsEdited By: Math Editors

Summary: This module is from Fundamentals of Mathematics by Denny Burzynski and Wade Ellis, Jr. This module discusses multiplication of fractions. By the end of the module students should be able to understand the concept of multiplication of fractions, multiply one fraction by another, multiply mixed numbers and find powers and roots of various fractions.

Section Overview

  • Fractions of Fractions
  • Multiplication of Fractions
  • Multiplication of Fractions by Dividing Out Common Factors
  • Multiplication of Mixed Numbers
  • Powers and Roots of Fractions

Fractions of Fractions

We know that a fraction represents a part of a whole quantity. For example, two fifths of one unit can be represented by

A rectangle equally divided into five parts. Each part is labeled one-fifth. Two of the parts are shaded.2525 size 12{ { {2} over {5} } } {} of the whole is shaded.

A natural question is, what is a fractional part of a fractional quantity, or, what is a fraction of a fraction? For example, what 2323 size 12{ { {2} over {3} } } {} of 1212 size 12{ { {1} over {2} } } {}?

We can suggest an answer to this question by using a picture to examine 2323 size 12{ { {2} over {3} } } {} of 1212 size 12{ { {1} over {2} } } {}.

First, let’s represent 1212 size 12{ { {1} over {2} } } {}.

A rectangle equally divided into two parts. Both parts are labeled one-half. One of the parts is shaded.1212 size 12{ { {1} over {2} } } {} of the whole is shaded.

Then divide each of the 1212 size 12{ { {1} over {2} } } {} parts into 3 equal parts.

A rectangle divided into six equal parts in a gridlike fashion, with three rows and two columns. Each part is labeled one-sixth. Below the rectangles are brackets showing that each column of sixths is equal to one-half. Each part is 1616 size 12{ { {1} over {6} } } {} of the whole.

Now we’ll take 2323 size 12{ { {2} over {3} } } {} of the 1212 size 12{ { {1} over {2} } } {} unit.

A rectangle divided into six equal parts in a gridlike fashion, with three rows and two columns. Each part is labeled one-sixth. Below the rectangles are brackets showing that each column of sixths is equal to one-half. The first and second boxes in the left column are shaded. 2323 size 12{ { {2} over {3} } } {} of 1212 size 12{ { {1} over {2} } } {} is 2626 size 12{ { {2} over {6} } } {}, which reduces to 1313 size 12{ { {1} over {3} } } {}.

Multiplication of Fractions

Now we ask, what arithmetic operation (+, –, ×, ÷) will produce 2626 size 12{ { {2} over {6} } } {} from 2323 size 12{ { {2} over {3} } } {} of 1212 size 12{ { {1} over {2} } } {}?

Notice that, if in the fractions 2323 size 12{ { {2} over {3} } } {} and 1212 size 12{ { {1} over {2} } } {}, we multiply the numerators together and the denominators together, we get precisely 2626 size 12{ { {2} over {6} } } {}.

2 1 3 2 = 2 6 2 1 3 2 = 2 6 size 12{ { {2 cdot 1} over {3 cdot 2} } = { {2} over {6} } } {}

This reduces to 1313 size 12{ { {1} over {3} } } {} as before.

Using this observation, we can suggest the following:

  1. The Word "OF" Indicates Multiplication: The word "of" translates to the arithmetic operation "times."
  2. The Method of Multiplying Fractions: To multiply two or more fractions, multiply the numerators together and then multiply the denominators together. Reduce if necessary.

numerator 1 denominator 1 numerator 2 denominator 2 = numerator 1 denominator 1 numerator 2 denominator 2 numerator 1 denominator 1 numerator 2 denominator 2 = numerator 1 denominator 1 numerator 2 denominator 2

Sample Set A

Perform the following multiplications.

Example 1

3416=3146 =324 Now, reduce. 3416=3146 =324 Now, reduce.

= 3 1 24 8 = 1 8 = 3 1 24 8 = 1 8 size 12{ {}= { { { { {3}}} cSup { size 8{1} } } over { { { {2}} { {4}}} cSub { size 8{8} } } } = { {1} over {8} } } {}

Thus

3 4 1 6 = 1 8 3 4 1 6 = 1 8 size 12{ { {3} over {4} } cdot { {1} over {6} } = { {1} over {8} } } {}

This means that 3434 size 12{ { {3} over {4} } } {} of 1616 size 12{ { {1} over {6} } } {} is 1818 size 12{ { {1} over {8} } } {}, that is, 3434 size 12{ { {3} over {4} } } {} of 1616 size 12{ { {1} over {6} } } {} of a unit is 1818 size 12{ { {1} over {8} } } {} of the original unit.

Example 2

384384 size 12{ { {3} over {8} } cdot 4} {}. Write 4 as a fraction by writing 4141 size 12{ { {4} over {1} } } {}

3 8 4 1 = 3 4 8 1 = 12 8 = 12 3 8 2 = 3 2 3 8 4 1 = 3 4 8 1 = 12 8 = 12 3 8 2 = 3 2 size 12{ { {3} over {8} } cdot { {4} over {1} } = { {3 cdot 4} over {8 cdot 1} } = { {"12"} over {8} } = { { { { {1}} { {2}}} cSup { size 8{3} } } over { { { {8}}} cSub { size 8{2} } } } = { {3} over {2} } } {}

3 8 4 = 3 2 3 8 4 = 3 2 size 12{ { {3} over {8} } cdot 4= { {3} over {2} } } {}

This means that 3838 size 12{ { {3} over {8} } } {} of 4 whole units is 3232 size 12{ { {3} over {2} } } {} of one whole unit.

Example 3

255814=251584=10116016=116255814=251584=10116016=116 size 12{ { {2} over {5} } cdot { {5} over {8} } cdot { {1} over {4} } = { {2 cdot 5 cdot 1} over {5 cdot 8 cdot 4} } = { { { { {1}} { {0}}} cSup { size 8{1} } } over { { { {1}} { {6}} { {0}}} cSub { size 8{"16"} } } } = { { {1} cSup {} } over { {"16"} cSub {} } } } {}

This means that 2525 size 12{ { {2} over {5} } } {} of 5858 size 12{ { {5} over {8} } } {} of 1414 size 12{ { {1} over {4} } } {} of a whole unit is 116116 size 12{ { {1} over {"16"} } } {} of the original unit.

Practice Set A

Perform the following multiplications.

Exercise 1

25162516 size 12{ { {2} over {5} } cdot { {1} over {6} } } {}

Solution

115115 size 12{ { {1} over {"15"} } } {}

Exercise 2

14891489 size 12{ { {1} over {4} } cdot { {8} over {9} } } {}

Solution

2929 size 12{ { {2} over {9} } } {}

Exercise 3

491516491516 size 12{ { {4} over {9} } cdot { {15} over {16} } } {}

Solution

512512 size 12{ { {5} over {"12"} } } {}

Exercise 4

23232323 size 12{ left ( { {2} over {3} } right ) left ( { {2} over {3} } right )} {}

Solution

4949 size 12{ { {4} over {9} } } {}

Exercise 5

74857485 size 12{ left ( { {7} over {4} } right ) left ( { {8} over {5} } right )} {}

Solution

145145 size 12{ { {"14"} over {5} } } {}

Exercise 6

56785678 size 12{ { {5} over {6} } cdot { {7} over {8} } } {}

Solution

35483548 size 12{ { {"35"} over {"48"} } } {}

Exercise 7

235235 size 12{ { {2} over {3} } cdot 5} {}

Solution

103103 size 12{ { {"10"} over {3} } } {}

Exercise 8

34103410 size 12{ left ( { {3} over {4} } right ) left ("10" right )} {}

Solution

152152 size 12{ { {"15"} over {2} } } {}

Exercise 9

34895123489512 size 12{ { {3} over {4} } cdot { {8} over {9} } cdot { {5} over {"12"} } } {}

Solution

518518 size 12{ { {5} over {"18"} } } {}

Multiplying Fractions by Dividing Out Common Factors

We have seen that to multiply two fractions together, we multiply numerators together, then denominators together, then reduce to lowest terms, if necessary. The reduction can be tedious if the numbers in the fractions are large. For example,

9 16 10 21 = 9 10 16 21 = 90 336 = 45 168 = 15 28 9 16 10 21 = 9 10 16 21 = 90 336 = 45 168 = 15 28 size 12{ { {9} over {"16"} } cdot { {"10"} over {"21"} } = { {9 cdot "10"} over {"16" cdot "21"} } = { {"90"} over {"336"} } = { {"45"} over {"168"} } = { {"15"} over {"28"} } } {}

We avoid the process of reducing if we divide out common factors before we multi­ply.

9 16 10 21 = 9 3 16 8 10 5 21 7 = 3 5 8 7 = 15 56 9 16 10 21 = 9 3 16 8 10 5 21 7 = 3 5 8 7 = 15 56 size 12{ { {9} over {"16"} } cdot { {"10"} over {"21"} } = { { { { {9}}} cSup { size 8{3} } } over { { { {1}} { {6}}} cSub { size 8{8} } } } cdot { { { { {1}} { {0}}} cSup { size 8{5} } } over { { { {2}} { {1}}} cSub { size 8{7} } } } = { {3 cdot 5} over {8 cdot 7} } = { {"15"} over {"56"} } } {}

Divide 3 into 9 and 21, and divide 2 into 10 and 16. The product is a fraction that is reduced to lowest terms.

The Process of Multiplication by Dividing Out Common Factors

To multiply fractions by dividing out common factors, divide out factors that are common to both a numerator and a denominator. The factor being divided out can appear in any numerator and any denominator.

Sample Set B

Perform the following multiplications.

Example 4

45564556 size 12{ { {4} over {5} } cdot { {5} over {6} } } {}

42515163=2113=2342515163=2113=23 size 12{ { { { { {4}}} cSup { size 8{2} } } over { { { {5}}} cSub { size 8{1} } } } cdot { { { { {5}}} cSup { size 8{1} } } over { { { {6}}} cSub { size 8{3} } } } = { {2 cdot 1} over {1 cdot 3} } = { {2} over {3} } } {}

Divide 4 and 6 by 2
Divide 5 and 5 by 5

Example 5

812810812810 size 12{ { {8} over {"12"} } cdot { {8} over {"10"} } } {}

8412382105=4235=8158412382105=4235=815 size 12{ { { { { {8}}} cSup { size 8{4} } } over { { { {1}} { {2}}} cSub { size 8{3} } } } cdot { { { { {8}}} cSup { size 8{2} } } over { { { {1}} { {0}}} cSub { size 8{5} } } } = { {4 cdot 2} over {3 cdot 5} } = { {8} over {"15"} } } {}

Divide 8 and 10 by 2.
Divide 8 and 12 by 4.

Example 6

8512=8215123=2513=1038512=8215123=2513=103 size 12{8 cdot { {5} over {"12"} } = { { { { {8}}} cSup { size 8{2} } } over {1} } cdot { {5} over { { { {1}} { {2}}} cSub { size 8{3} } } } = { {2 cdot 5} over {1 cdot 3} } = { {"10"} over {3} } } {}

Example 7

351863105351863105 size 12{ { {"35"} over {"18"} } cdot { {"63"} over {"105"} } } {}

35 7 1 18 2 63 7 105 21 3 = 1 7 2 3 = 7 6 35 7 1 18 2 63 7 105 21 3 = 1 7 2 3 = 7 6

Example 8

139639112139639112 size 12{ { {"13"} over {9} } cdot { {6} over {"39"} } cdot { {1} over {"12"} } } {}

13 1 9 6 2 1 39 3 1 1 126 = 1 1 1 9 1 6 = 1 54 13 1 9 6 2 1 39 3 1 1 126 = 1 1 1 9 1 6 = 1 54 size 12{ { { { { {1}} { {3}}} cSup { size 8{1} } } over {9} } cdot { { { { {6}}} cSup { size 8{ { { {2}}} cSup { size 6{1} } } } } over { { { {3}} { {9}}} cSub { { { {3}}} cSub { size 6{1} } } } } size 12{ cdot { {1} over {"12"} } = { {1 cdot 1 cdot 1} over {9 cdot 1 cdot 6} } = { {1} over {"54"} } }} {}

Practice Set B

Perform the following multiplications.

Exercise 10

23782378 size 12{ { {2} over {3} } cdot { {7} over {8} } } {}

Solution

712712 size 12{ { {7} over {"12"} } } {}

Exercise 11

2512104525121045 size 12{ { {"25"} over {"12"} } cdot { {"10"} over {"45"} } } {}

Solution

25542554 size 12{ { {"25"} over {"54"} } } {}

Exercise 12

4048729040487290 size 12{ { {"40"} over {"48"} } cdot { {"72"} over {"90"} } } {}

Solution

2323 size 12{ { {2} over {3} } } {}

Exercise 13

72497249 size 12{7 cdot { {2} over {"49"} } } {}

Solution

2727 size 12{ { {2} over {7} } } {}

Exercise 14

12381238 size 12{"12" cdot { {3} over {8} } } {}

Solution

9292 size 12{ { {9} over {2} } } {}

Exercise 15

13714261371426 size 12{ left ( { {"13"} over {7} } right ) left ( { {"14"} over {"26"} } right )} {}

Solution

1

Exercise 16

1610226214416102262144 size 12{ { {"16"} over {"10"} } cdot { {"22"} over {6} } cdot { {"21"} over {"44"} } } {}

Solution

145145 size 12{ { {"14"} over {5} } } {}

Multiplication of Mixed Numbers

Multiplying Mixed Numbers

To perform a multiplication in which there are mixed numbers, it is convenient to first convert each mixed number to an improper fraction, then multiply.

Sample Set C

Perform the following multiplications. Convert improper fractions to mixed numbers.

Example 9

118423118423 size 12{1 { {1} over {8} } cdot 4 { {2} over {3} } } {}

Convert each mixed number to an improper fraction.

1 1 8 = 8 1 + 1 8 = 9 8 1 1 8 = 8 1 + 1 8 = 9 8 size 12{1 { {1} over {8} } = { {8 cdot 1+1} over {8} } = { {9} over {8} } } {}

4 2 3 = 4 3 + 2 3 = 14 3 4 2 3 = 4 3 + 2 3 = 14 3 size 12{4 { {2} over {3} } = { {4 cdot 3+2} over {3} } = { {"14"} over {3} } } {}

9 3 8 4 14 7 3 1 = 3 7 4 1 = 21 4 = 5 1 4 9 3 8 4 14 7 3 1 = 3 7 4 1 = 21 4 = 5 1 4 size 12{ { { { { {9}}} cSup { size 8{3} } } over { { { {8}}} cSub { size 8{4} } } } cdot { { { { {1}} { {4}}} cSup { size 8{7} } } over { {3} cSub { size 8{1} } } } = { {3 cdot 7} over {4 cdot 1} } = { {"21"} over {4} } =5 { {1} over {4} } } {}

Example 10

1681516815 size 12{"16" cdot 8 { {1} over {5} } } {}

Convert 815815 size 12{8 { {1} over {5} } } {} to an improper fraction.

8 1 5 = 5 8 + 1 5 = 41 5 8 1 5 = 5 8 + 1 5 = 41 5 size 12{8 { {1} over {5} } = { {5 cdot 8+1} over {5} } = { {"41"} over {5} } } {}

161415 161415 .

There are no common factors to divide out.

16 1 41 5 = 16 41 1 5 = 656 5 = 131 1 5 16 1 41 5 = 16 41 1 5 = 656 5 = 131 1 5 size 12{ { {"16"} over {1} } cdot { {"41"} over {5} } = { {"16" cdot "41"} over {1 cdot 5} } = { {"656"} over {5} } ="131" { {1} over {5} } } {}

Example 11

91612359161235 size 12{9 { {1} over {6} } cdot "12" { {3} over {5} } } {}

Convert to improper fractions.

9 1 6 = 6 9 + 1 6 = 55 6 9 1 6 = 6 9 + 1 6 = 55 6 size 12{9 { {1} over {6} } = { {6 cdot 9+1} over {6} } = { {"55"} over {6} } } {}

12 3 5 = 5 12 + 3 5 = 63 5 12 3 5 = 5 12 + 3 5 = 63 5 size 12{"12" { {3} over {5} } = { {5 cdot "12"+3} over {5} } = { {"63"} over {5} } } {}

55 11 6 2 63 21 5 1 = 11 21 2 1 = 231 2 = 115 1 2 55 11 6 2 63 21 5 1 = 11 21 2 1 = 231 2 = 115 1 2 size 12{ { { { { {5}} { {5}}} cSup { size 8{"11"} } } over { { { {6}}} cSub { size 8{2} } } } cdot { { { { {6}} { {3}}} cSup { size 8{"21"} } } over { { { {5}}} cSub { size 8{1} } } } = { {"11" cdot "21"} over {2 cdot 1} } = { {"231"} over {2} } ="115" { {1} over {2} } } {}

Example 12

118 4 12 3 18 = 118 93 21 105 3 1 = 1135 811 = 1658 =20 58 118 4 12 3 18 = 118 93 21 105 3 1 = 1135 811 = 1658 =20 58

Practice Set C

Perform the following multiplications. Convert improper fractions to mixed numbers.

Exercise 17

223214223214 size 12{2 { {2} over {3} } cdot 2 { {1} over {4} } } {}

Solution

6

Exercise 18

62333106233310 size 12{6 { {2} over {3} } cdot 3 { {3} over {"10"} } } {}

Solution

22

Exercise 19

7181271812 size 12{7 { {1} over {8} } cdot "12"} {}

Solution

85128512 size 12{"85" { {1} over {2} } } {}

Exercise 20

225334313225334313 size 12{2 { {2} over {5} } cdot 3 { {3} over {4} } cdot 3 { {1} over {3} } } {}

Solution

30

Powers and Roots of Fractions

Sample Set D

Find the value of each of the following.

Example 13

162=1616=1166=136162=1616=1166=136 size 12{ left ( { {1} over {6} } right ) rSup { size 8{2} } = { {1} over {6} } cdot { {1} over {6} } = { {1 cdot 1} over {6 cdot 6} } = { {1} over {"36"} } } {}

Example 14

91009100 size 12{ sqrt { { {9} over {"100"} } } } {} . We’re looking for a number, call it ?, such that when it is squared, 91009100 size 12{ { {9} over {"100"} } } {} is produced.

? 2 = 9 100 ? 2 = 9 100 size 12{ left (? right ) rSup { size 8{2} } = { {9} over {"100"} } } {}

We know that

32=932=9 size 12{3 rSup { size 8{2} } =9} {} and 102=100102=100 size 12{"10" rSup { size 8{2} } ="100"} {}

We’ll try 310310 size 12{ { {3} over {"10"} } } {}. Since

3 10 2 = 3 10 3 10 = 3 3 10 10 = 9 100 3 10 2 = 3 10 3 10 = 3 3 10 10 = 9 100 size 12{ left ( { {3} over {"10"} } right ) rSup { size 8{2} } = { {3} over {"10"} } cdot { {3} over {"10"} } = { {3 cdot 3} over {"10" cdot "10"} } = { {9} over {"100"} } } {}

9 100 = 3 10 9 100 = 3 10 size 12{ sqrt { { {9} over {"100"} } ={}} { {3} over {"10"} } } {}

Example 15

425100121425100121 size 12{4 { {2} over {5} } cdot sqrt { { {"100"} over {"121"} } } } {}

22 2 5 1 10 2 11 1 = 2 2 1 1 = 4 1 = 4 22 2 5 1 10 2 11 1 = 2 2 1 1 = 4 1 = 4 size 12{ { { { { {2}} { {2}}} cSup { size 8{2} } } over { { { {5}}} cSub { size 8{1} } } } cdot { { { { {1}} { {0}}} cSup { size 8{2} } } over { { { {1}} { {1}}} cSub { size 8{1} } } } = { {2 cdot 2} over {1 cdot 1} } = { {4} over {1} } =4} {}

4 2 5 100 121 = 4 4 2 5 100 121 = 4 size 12{4 { {2} over {5} } cdot sqrt { { {"100"} over {"121"} } =4} } {}

Practice Set D

Find the value of each of the following.

Exercise 21

182182 size 12{ left ( { {1} over {8} } right ) rSup { size 8{2} } } {}

Solution

164164

Exercise 22

31023102 size 12{ left ( { {3} over {"10"} } right ) rSup { size 8{2} } } {}

Solution

91009100

Exercise 23

4949 size 12{ sqrt { { {4} over {9} } } } {}

Solution

2323

Exercise 24

1414 size 12{ sqrt { { {1} over {4} } } } {}

Solution

1212

Exercise 25

38193819 size 12{ { {3} over {8} } cdot sqrt { { {1} over {9} } } } {}

Solution

1818

Exercise 26

9138110091381100 size 12{9 { {1} over {3} } cdot sqrt { { {"81"} over {"100"} } } } {}

Solution

825825

Exercise 27

281316916281316916 size 12{2 { {8} over {"13"} } cdot sqrt { { {"169"} over {"16"} } } } {}

Solution

812812

Exercises

For the following six problems, use the diagrams to find each of the following parts. Use multiplication to verify your re­sult.

Exercise 28

3434 size 12{ { {3} over {4} } } {} of 1313 size 12{ { {1} over {3} } } {}

A rectangle divided into twelve parts in a pattern of four rows and three columns.

Solution

1414 size 12{ { {1} over {4} } } {}

A rectangle divided into twelve parts in a pattern of four rows and three columns. Three of the parts are shaded.

Exercise 29

2323 size 12{ { {2} over {3} } } {} of 3535 size 12{ { {3} over {5} } } {}

A rectangle divided into twelve parts in a pattern of three rows and four columns.

Exercise 30

2727 size 12{ { {2} over {7} } } {} of 7878 size 12{ { {7} over {8} } } {}

A rectangle divided into fifty-six parts in a pattern of seven rows and eight columns.

Solution

1414 size 12{ { {1} over {4} } } {}

A rectangle divided into fifty-six parts in a pattern of seven rows and eight columns. Fourteen of the parts are shaded.

Exercise 31

5656 size 12{ { {5} over {6} } } {} of 3434 size 12{ { {3} over {4} } } {}

A rectangle divided into twenty-four parts in a pattern of six rows and four columns.

Exercise 32

1818 size 12{ { {1} over {8} } } {} of 1818 size 12{ { {1} over {8} } } {}

A rectangle divided into sixty-four parts in a pattern of eight rows and eight columns.

Solution

164164 size 12{ { {1} over {"64"} } } {}

A rectangle divided into sixty-four parts in a pattern of eight rows and eight columns. One part is shaded.

Exercise 33

712712 size 12{ { {7} over {"12"} } } {} of 6767 size 12{ { {6} over {7} } } {}

A rectangle divided into eighty-four parts in a pattern of twelve rows and seven columns.

For the following problems, find each part without using a diagram.

Exercise 34

1212 size 12{ { {1} over {2} } } {} of 4545 size 12{ { {4} over {5} } } {}

Solution

2525 size 12{ { {2} over {5} } } {}

Exercise 35

3535 size 12{ { {3} over {5} } } {} of 512512 size 12{ { {5} over {"12"} } } {}

Exercise 36

1414 size 12{ { {1} over {4} } } {} of 8989 size 12{ { {8} over {9} } } {}

Solution

2929 size 12{ { {2} over {9} } } {}

Exercise 37

316316 size 12{ { {3} over {"16"} } } {} of 12151215 size 12{ { {"12"} over {"15"} } } {}

Exercise 38

29 of 6529 of 65 size 12{ { {2} over {9} } "of" { {6} over {5} } } {}

Solution

415415 size 12{ { {4} over {"15"} } } {}

Exercise 39

18 of 3818 of 38 size 12{ { {1} over {8} } ital "of" { {3} over {8} } } {}

Exercise 40

23  of  91023  of  910 size 12{ { {2} over {3} } ital "of" { {9} over {"10"} } } {}

Solution

3535 size 12{ { {3} over {5} } } {}

Exercise 41

1819 of 38541819 of 3854 size 12{ { {"18"} over {"19"} } ital "of" { {"38"} over {"54"} } } {}

Exercise 42

56 of 22556 of 225 size 12{ { {5} over {6} } ital "of"2 { {2} over {5} } } {}

Solution

22 size 12{2} {}

Exercise 43

34 of 33534 of 335 size 12{ { {3} over {4} } ital "of"3 { {3} over {5} } } {}

Exercise 44

32 of 22932 of 229 size 12{ { {3} over {2} } ital "of"2 { {2} over {9} } } {}

Solution

103 or 313103 or 313 size 12{ { {"10"} over {3} } " or "3 { {1} over {3} } } {}

Exercise 45

154 of 445154 of 445 size 12{ { {"15"} over {4} } ital "of"4 { {4} over {5} } } {}

Exercise 46

513 of 934513 of 934 size 12{5 { {1} over {3} } ital "of"9 { {3} over {4} } } {}

Solution

52

Exercise 47

11315 of 83411315 of 834 size 12{1 { {"13"} over {"15"} } ital "of"8 { {3} over {4} } } {}

Exercise 48

89 of 34 of 2389 of 34 of 23 size 12{ { {8} over {9} } ital "of" { {3} over {4} } ital "of" { {2} over {3} } } {}

Solution

4949 size 12{ { {4} over {9} } } {}

Exercise 49

16 of 1213 of 263616 of 1213 of 2636 size 12{ { {1} over {6} } " of " { {"12"} over {"13"} } " of " { {"26"} over {"36"} } } {}

Exercise 50

12 of 13 of 1412 of 13 of 14 size 12{ { {1} over {2} } " of " { {1} over {3} } " of " { {1} over {4} } } {}

Solution

124124 size 12{ { {1} over {"24"} } } {}

Exercise 51

137 of 515 of 813137 of 515 of 813 size 12{1 { {3} over {7} } " of 5" { {1} over {5} } " of 8" { {1} over {3} } } {}

Exercise 52

245 of 556 of 757245 of 556 of 757 size 12{2 { {4} over {5} } " of 5" { {5} over {6} } " of 7" { {5} over {7} } } {}

Solution

126

For the following problems, find the products. Be sure to reduce.

Exercise 53

13231323 size 12{ { {1} over {3} } cdot { {2} over {3} } } {}

Exercise 54

12121212 size 12{ { {1} over {2} } cdot { {1} over {2} } } {}

Solution

1414 size 12{ { {1} over {4} } } {}

Exercise 55

34383438 size 12{ { {3} over {4} } cdot { {3} over {8} } } {}

Exercise 56

25562556 size 12{ { {2} over {5} } cdot { {5} over {6} } } {}

Solution

1313 size 12{ { {1} over {3} } } {}

Exercise 57

38893889 size 12{ { {3} over {8} } cdot { {8} over {9} } } {}

Exercise 58

561415561415 size 12{ { {5} over {6} } cdot { {"14"} over {"15"} } } {}

Solution

7979 size 12{ { {7} over {9} } } {}

Exercise 59

47744774 size 12{ { {4} over {7} } cdot { {7} over {4} } } {}

Exercise 60

311113311113 size 12{ { {3} over {"11"} } cdot { {"11"} over {3} } } {}

Solution

1

Exercise 61

91620279162027 size 12{ { {9} over {"16"} } cdot { {"20"} over {"27"} } } {}

Exercise 62

3536485535364855 size 12{ { {"35"} over {"36"} } cdot { {"48"} over {"55"} } } {}

Solution

28332833 size 12{ { {"28"} over {"33"} } } {}

Exercise 63

2125151421251514 size 12{ { {"21"} over {"25"} } cdot { {"15"} over {"14"} } } {}

Exercise 64

7699663876996638 size 12{ { {"76"} over {"99"} } cdot { {"66"} over {"38"} } } {}

Solution

4343 size 12{ { {4} over {3} } } {}

Exercise 65

3714186237141862 size 12{ { {3} over {7} } cdot { {"14"} over {"18"} } cdot { {6} over {2} } } {}

Exercise 66

415103272415103272 size 12{ { {4} over {"15"} } cdot { {"10"} over {3} } cdot { {"27"} over {2} } } {}

Solution

12

Exercise 67

1415212845714152128457 size 12{ { {"14"} over {"15"} } cdot { {"21"} over {"28"} } cdot { {"45"} over {7} } } {}

Exercise 68

831541621831541621 size 12{ { {8} over {3} } cdot { {"15"} over {4} } cdot { {"16"} over {"21"} } } {}

Solution

71321 or 1602171321 or 16021 size 12{7 { {"13"} over {"21"} } " or " { {"160"} over {"21"} } } {}

Exercise 69

1814213536718142135367 size 12{ { {"18"} over {"14"} } cdot { {"21"} over {"35"} } cdot { {"36"} over {7} } } {}

Exercise 70

35203520 size 12{ { {3} over {5} } cdot "20"} {}

Solution

12

Exercise 71

89188918 size 12{ { {8} over {9} } cdot "18"} {}

Exercise 72

6113361133 size 12{ { {6} over {"11"} } cdot "33"} {}

Solution

18

Exercise 73

181938181938 size 12{ { {"18"} over {"19"} } cdot "38"} {}

Exercise 74

56105610 size 12{ { {5} over {6} } cdot "10"} {}

Solution

253 or 813253 or 813 size 12{ { {"25"} over {3} } " or 8" { {1} over {3} } } {}

Exercise 75

193193 size 12{ { {1} over {9} } cdot 3} {}

Exercise 76

538538 size 12{5 cdot { {3} over {8} } } {}

Solution

158=178158=178 size 12{ { {"15"} over {8} } "=1" { {7} over {8} } } {}

Exercise 77

16141614 size 12{"16" cdot { {1} over {4} } } {}

Exercise 78

231234231234 size 12{ { {2} over {3} } cdot "12" cdot { {3} over {4} } } {}

Solution

6

Exercise 79

382423382423 size 12{ { {3} over {8} } cdot "24" cdot { {2} over {3} } } {}

Exercise 80

51810255181025 size 12{ { {5} over {"18"} } cdot "10" cdot { {2} over {5} } } {}

Solution

109=119109=119 size 12{ { {"10"} over {9} } "=1" { {1} over {9} } } {}

Exercise 81

161550310161550310 size 12{ { {"16"} over {"15"} } cdot "50" cdot { {3} over {"10"} } } {}

Exercise 82

51327325132732 size 12{5 { {1} over {3} } cdot { {"27"} over {"32"} } } {}

Solution

92=41292=412 size 12{ { {9} over {2} } "=4" { {1} over {2} } } {}

Exercise 83

267535267535 size 12{2 { {6} over {7} } cdot 5 { {3} over {5} } } {}

Exercise 84

61424156142415 size 12{6 { {1} over {4} } cdot 2 { {4} over {"15"} } } {}

Solution

856=1416856=1416 size 12{ { {"85"} over {6} } "=14" { {1} over {6} } } {}

Exercise 85

913916113913916113 size 12{9 { {1} over {3} } cdot { {9} over {"16"} } cdot 1 { {1} over {3} } } {}

Exercise 86

359113141012359113141012 size 12{3 { {5} over {9} } cdot 1 { {"13"} over {"14"} } cdot "10" { {1} over {2} } } {}

Solution

72

Exercise 87

2014823164520148231645 size 12{"20" { {1} over {4} } cdot 8 { {2} over {3} } cdot "16" { {4} over {5} } } {}

Exercise 88

232232 size 12{ left ( { {2} over {3} } right ) rSup { size 8{2} } } {}

Solution

4949 size 12{ { {4} over {9} } } {}

Exercise 89

382382 size 12{ left ( { {3} over {8} } right ) rSup { size 8{2} } } {}

Exercise 90

21122112 size 12{ left ( { {2} over {"11"} } right ) rSup { size 8{2} } } {}

Solution

41214121 size 12{ { {4} over {"121"} } } {}

Exercise 91

892892 size 12{ left ( { {8} over {9} } right ) rSup { size 8{2} } } {}

Exercise 92

122122 size 12{ left ( { {1} over {2} } right ) rSup { size 8{2} } } {}

Solution

1414 size 12{ { {1} over {4} } } {}

Exercise 93

352203352203 size 12{ left ( { {3} over {5} } right ) rSup { size 8{2} } cdot { {"20"} over {3} } } {}

Exercise 94

14216151421615 size 12{ left ( { {1} over {4} } right ) rSup { size 8{2} } cdot { {"16"} over {"15"} } } {}

Solution

115115 size 12{ { {1} over {"15"} } } {}

Exercise 95

1228912289 size 12{ left ( { {1} over {2} } right ) rSup { size 8{2} } cdot { {8} over {9} } } {}

Exercise 96

122252122252 size 12{ left ( { {1} over {2} } right ) rSup { size 8{2} } cdot left ( { {2} over {5} } right ) rSup { size 8{2} } } {}

Solution

125125 size 12{ { {1} over {"25"} } } {}

Exercise 97

372192372192 size 12{ left ( { {3} over {7} } right ) rSup { size 8{2} } cdot left ( { {1} over {9} } right ) rSup { size 8{2} } } {}

For the following problems, find each value. Reduce answers to lowest terms or convert to mixed numbers.

Exercise 98

4949 size 12{ sqrt { { {4} over {9} } } } {}

Solution

2323 size 12{ { {2} over {3} } } {}

Exercise 99

16251625 size 12{ sqrt { { {"16"} over {"25"} } } } {}

Exercise 100

8112181121 size 12{ sqrt { { {"81"} over {"121"} } } } {}

Solution

911911 size 12{ { {9} over {"11"} } } {}

Exercise 101

36493649 size 12{ sqrt { { {"36"} over {"49"} } } } {}

Exercise 102

1442514425 size 12{ sqrt { { {"144"} over {"25"} } } } {}

Solution

125=225125=225 size 12{ { {"12"} over {5} } =2 { {2} over {5} } } {}

Exercise 103

2391623916 size 12{ { {2} over {3} } cdot sqrt { { {9} over {"16"} } } } {}

Exercise 104

352581352581 size 12{ { {3} over {5} } cdot sqrt { { {"25"} over {"81"} } } } {}

Solution

1313 size 12{ { {1} over {3} } } {}

Exercise 105

85225648522564 size 12{ left ( { {8} over {5} } right ) rSup { size 8{2} } cdot sqrt { { {"25"} over {"64"} } } } {}

Exercise 106

13424491342449 size 12{ left (1 { {3} over {4} } right ) rSup { size 8{2} } cdot sqrt { { {4} over {"49"} } } } {}

Solution

7878 size 12{ { {7} over {8} } } {}

Exercise 107

223236496481223236496481 size 12{ left (2 { {2} over {3} } right ) rSup { size 8{2} } cdot sqrt { { {"36"} over {"49"} } } cdot sqrt { { {"64"} over {"81"} } } } {}

Exercises for Review

Exercise 108

((Reference)) How many thousands in 342,810?

Solution

2

Exercise 109

((Reference)) Find the sum of 22, 42, and 101.

Exercise 110

((Reference)) Is 634,281 divisible by 3?

Solution

yes

Exercise 111

((Reference)) Is the whole number 51 prime or composite?

Exercise 112

((Reference)) Reduce 3615036150 size 12{ { {"36"} over {"150"} } } {} to lowest terms.

Solution

625625 size 12{ { {6} over {"25"} } } {}

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks