Skip to content Skip to navigation Skip to collection information

OpenStax_CNX

You are here: Home » Content » Derived copy of Fundamentals of Mathematics » Exercise Supplement

Navigation

Table of Contents

Lenses

What is a lens?

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

This content is ...

Endorsed by Endorsed (What does "Endorsed by" mean?)

This content has been endorsed by the organizations listed. Click each link for a list of all content endorsed by the organization.
  • CCQ display tagshide tags

    This module is included in aLens by: Community College of QatarAs a part of collection: "Fundamentals of Mathematics"

    Comments:

    "Used as supplemental materials for developmental math courses."

    Click the "CCQ" link to see all content they endorse.

    Click the tag icon tag icon to display tags associated with this content.

  • College Open Textbooks display tagshide tags

    This module is included inLens: Community College Open Textbook Collaborative
    By: CC Open Textbook CollaborativeAs a part of collection: "Fundamentals of Mathematics"

    Comments:

    "Reviewer's Comments: 'I would recommend this text for a basic math course for students moving on to elementary algebra. The information in most chapters is useful, very clear, and easily […]"

    Click the "College Open Textbooks" link to see all content they endorse.

    Click the tag icon tag icon to display tags associated with this content.

Affiliated with (What does "Affiliated with" mean?)

This content is either by members of the organizations listed or about topics related to the organizations listed. Click each link to see a list of all content affiliated with the organization.
  • Featured Content display tagshide tags

    This module is included inLens: Connexions Featured Content
    By: ConnexionsAs a part of collection: "Fundamentals of Mathematics"

    Comments:

    "Fundamentals of Mathematics is a work text that covers the traditional topics studied in a modern prealgebra course, as well as topics of estimation, elementary analytic geometry, and […]"

    Click the "Featured Content" link to see all content affiliated with them.

    Click the tag icon tag icon to display tags associated with this content.

Also in these lenses

  • UniqU content

    This module is included inLens: UniqU's lens
    By: UniqU, LLCAs a part of collection: "Fundamentals of Mathematics"

    Click the "UniqU content" link to see all content selected in this lens.

Recently Viewed

This feature requires Javascript to be enabled.

Tags

(What is a tag?)

These tags come from the endorsement, affiliation, and other lenses that include this content.
 

Exercise Supplement

Module by: Wade Ellis, Denny Burzynski. E-mail the authorsEdited By: Math Editors

Summary: This module is from Fundamentals of Mathematics by Denny Burzynski and Wade Ellis, Jr. This module is an exercise supplement for the chapter "Techniques of Estimation" and contains many exercise problems. Odd problems are accompanied by solutions.

Exercise Supplement

Estimation by Rounding ((Reference))

For problems 1-70, estimate each value using the method of rounding. After you have made an estimate, find the exact value. Compare the exact and estimated values. Results may vary.

Exercise 1

286+312286+312 size 12{"286"+"312"} {}

Solution

600 (598)

Exercise 2

419+582419+582 size 12{"419"+"582"} {}

Exercise 3

689+511689+511 size 12{"689"+"511"} {}

Solution

(1,200)

Exercise 4

926+1,105926+1,105 size 12{"926"+1,"105"} {}

Exercise 5

1,927+3,0171,927+3,017 size 12{1,"927"+3,"017"} {}

Solution

4,900 (4,944)

Exercise 6

5,026+2,8145,026+2,814 size 12{5,"026"+2,"814"} {}

Exercise 7

1,408+2,3521,408+2,352 size 12{1,"408"+2,"352"} {}

Solution

3,800 (3,760)

Exercise 8

1,186+4,2281,186+4,228 size 12{1,"186"+4,"228"} {}

Exercise 9

5,771+2465,771+246 size 12{5,"771"+"246"} {}

Solution

6,050 (6,017)

Exercise 10

8,305+4848,305+484 size 12{8,"305"+"484"} {}

Exercise 11

3,812+2,9063,812+2,906 size 12{3,"812"+2,"906"} {}

Solution

6,700 (6,718)

Exercise 12

5,293+8,0075,293+8,007 size 12{5,"293"+8,"007"} {}

Exercise 13

28,481+32,85628,481+32,856 size 12{"28","481"+"32","856"} {}

Solution

61,400 (61,337)

Exercise 14

92,512+26,07192,512+26,071 size 12{"92","512"+"26","071"} {}

Exercise 15

87,612+2,10687,612+2,106 size 12{"87","612"+2,"106"} {}

Solution

89,700 (89,718)

Exercise 16

42,612+4,86142,612+4,861 size 12{"42","612"+4,"861"} {}

Exercise 17

212,413+609212,413+609 size 12{"212","413"+"609"} {}

Solution

213,000 (213,022)

Exercise 18

487,235+494487,235+494 size 12{"487","235"+"494"} {}

Exercise 19

2,409+1,5262,409+1,526 size 12{2,"409"+1,"526"} {}

Solution

3,900 (3,935)

Exercise 20

3,704+4,7043,704+4,704 size 12{3,"704"+4,"704"} {}

Exercise 21

41634163 size 12{"41" cdot "63"} {}

Solution

2,400 (2,583)

Exercise 22

38813881 size 12{"38" cdot "81"} {}

Exercise 23

18281828 size 12{"18" cdot "28"} {}

Solution

600 (504)

Exercise 24

52215221 size 12{"52" cdot "21"} {}

Exercise 25

307489307489 size 12{"307" cdot "489"} {}

Solution

150,123 147,000 (150,123)

Exercise 26

412807412807 size 12{"412" cdot "807"} {}

Exercise 27

7761477614 size 12{"77" cdot "614"} {}

Solution

47,278 48,000 (47,278)

Exercise 28

6259662596 size 12{"62" cdot "596"} {}

Exercise 29

2747327473 size 12{"27" cdot "473"} {}

Solution

12,771 14,100 (12,711)

Exercise 30

9233692336 size 12{"92" cdot "336"} {}

Exercise 31

1281412814 size 12{"12" cdot "814"} {}

Solution

8,100 (9,768)

Exercise 32

82,10682,106 size 12{8 cdot 2,"106"} {}

Exercise 33

192452192452 size 12{"192" cdot "452"} {}

Solution

90,000 (86,784)

Exercise 34

374816374816 size 12{"374" cdot "816"} {}

Exercise 35

884,392884,392 size 12{"88" cdot 4,"392"} {}

Solution

396,000 (386,496)

Exercise 36

1262,8341262,834 size 12{"126" cdot 2,"834"} {}

Exercise 37

3,8964133,896413 size 12{3,"896" cdot "413"} {}

Solution

1,609,048 1,560,000 (1,609,048)

Exercise 38

5,7948375,794837 size 12{5,"794" cdot "837"} {}

Exercise 39

6,3113,5126,3113,512 size 12{6,"311" cdot 3,"512"} {}

Solution

22,050,000 (22,164,232)

Exercise 40

7,4715,7827,4715,782 size 12{7,"471" cdot 5,"782"} {}

Exercise 41

180÷12180÷12 size 12{"180" div "12"} {}

Solution

18 (15)

Exercise 42

309÷16309÷16 size 12{"309" div "16"} {}

Exercise 43

286÷22286÷22 size 12{"286" div "22"} {}

Solution

14121412 size 12{"14" { {1} over {2} } } {} (13)

Exercise 44

527÷17527÷17 size 12{"527" div "17"} {}

Exercise 45

1,007÷191,007÷19 size 12{1,"007" div "19"} {}

Solution

50 (53)

Exercise 46

1,728÷361,728÷36 size 12{1,"728" div "36"} {}

Exercise 47

2,703÷532,703÷53 size 12{2,"703" div "53"} {}

Solution

54 (51)

Exercise 48

2,562÷612,562÷61 size 12{2,"562" div "61"} {}

Exercise 49

1,260÷121,260÷12 size 12{1,"260" div "12"} {}

Solution

130 (105)

Exercise 50

3,618÷183,618÷18 size 12{3,"618" div "18"} {}

Exercise 51

3,344÷763,344÷76 size 12{3,"344" div "76"} {}

Solution

41.25 (44)

Exercise 52

7,476÷3567,476÷356 size 12{7,"476" div "356"} {}

Exercise 53

20,984÷48820,984÷488 size 12{"20","984" div "488"} {}

Solution

42 (43)

Exercise 54

43,776÷60843,776÷608 size 12{"43","776" div "608"} {}

Exercise 55

7,196÷5147,196÷514 size 12{7,"196" div "514"} {}

Solution

14.4 (14)

Exercise 56

51,492÷51451,492÷514 size 12{"51","492" div "514"} {}

Exercise 57

26,962÷44226,962÷442 size 12{"26","962" div "442"} {}

Solution

60 (61)

Exercise 58

33,712÷11233,712÷112 size 12{"33","712" div "112"} {}

Exercise 59

105,152÷106105,152÷106 size 12{"105","152" div "106"} {}

Solution

1,000 (992)

Exercise 60

176,978÷214176,978÷214 size 12{"176","978" div "214"} {}

Exercise 61

48.06+23.1148.06+23.11 size 12{"48" "." "06"+"23" "." "11"} {}

Solution

71.1 (71.17)

Exercise 62

73.73+72.973.73+72.9 size 12{"73" "." "73"+"72" "." 9} {}

Exercise 63

62.91+56.462.91+56.4 size 12{"62" "." "91"+"56" "." 4} {}

Solution

119.4 (119.31)

Exercise 64

87.865+46.77287.865+46.772 size 12{"87" "." "865"+"46" "." "772"} {}

Exercise 65

174.6+97.2174.6+97.2 size 12{"174" "." 6+"97" "." 2} {}

Solution

272 (271.8)

Exercise 66

(48.3)(29.6)(48.3)(29.6) size 12{ \( "48" "." 3 \) \( "29" "." 6 \) } {}

Exercise 67

(87.11)(23.2)(87.11)(23.2) size 12{ \( "87" "." "11" \) \( "23" "." 2 \) } {}

Solution

2,001 (2,020.952)

Exercise 68

(107.02)(48.7)(107.02)(48.7) size 12{ \( "107" "." "02" \) \( "48" "." 7 \) } {}

Exercise 69

(0.76)(5.21)(0.76)(5.21) size 12{ \( 0 "." "76" \) \( 5 "." "21" \) } {}

Solution

4.16 (3.9596)

Exercise 70

(1.07)(13.89)(1.07)(13.89) size 12{ \( 1 "." "07" \) \( "13" "." "89" \) } {}

Estimation by Clustering ((Reference))

For problems 71-90, estimate each value using the method of clustering. After you have made an estimate, find the exact value. Compare the exact and estimated values. Results may vary.

Exercise 71

38+51+41+4838+51+41+48 size 12{"38"+"51"+"41"+"48"} {}

Solution

2(40)+2(50)=1802(40)+2(50)=180 size 12{2 \( "40" \) +2 \( "50" \) ="180"} {} (178)

Exercise 72

19+73+23+7119+73+23+71 size 12{"19"+"73"+"23"+"71"} {}

Exercise 73

27+62+59+3127+62+59+31 size 12{"27"+"62"+"59"+"31"} {}

Solution

2(30)+2(60)=1802(30)+2(60)=180 size 12{2 \( "30" \) +2 \( "60" \) ="180"} {} (179)

Exercise 74

18+73+69+1918+73+69+19 size 12{"18"+"73"+"69"+"19"} {}

Exercise 75

83+49+79+5283+49+79+52 size 12{"83"+"49"+"79"+"52"} {}

Solution

2(80)+2(50)=2602(80)+2(50)=260 size 12{2 \( "80" \) +2 \( "50" \) ="260"} {} (263)

Exercise 76

67+71+84+8167+71+84+81 size 12{"67"+"71"+"84"+"81"} {}

Exercise 77

16+13+24+2616+13+24+26 size 12{"16"+"13"+"24"+"26"} {}

Solution

3(20)+1(10)=703(20)+1(10)=70 size 12{3 \( "20" \) +1 \( "10" \) ="70"} {} (79)

Exercise 78

34+56+36+5534+56+36+55 size 12{"34"+"56"+"36"+"55"} {}

Exercise 79

14+17+83+8714+17+83+87 size 12{"14"+"17"+"83"+"87"} {}

Solution

2(15)+2(80)=1902(15)+2(80)=190 size 12{2 \( "15" \) +2 \( "80" \) ="190"} {} (201)

Exercise 80

93+108+96+11193+108+96+111 size 12{"93"+"108"+"96"+"111"} {}

Exercise 81

18+20+31+29+24+3818+20+31+29+24+38 size 12{"18"+"20"+"31"+"29"+"24"+"38"} {}

Solution

3(20)+2(30)+40=1603(20)+2(30)+40=160 size 12{3 \( "20" \) +2 \( "30" \) +"40"="160"} {} (160)

Exercise 82

32+27+48+51+72+6932+27+48+51+72+69 size 12{"32"+"27"+"48"+"51"+"72"+"69"} {}

Exercise 83

64+17+27+59+31+2164+17+27+59+31+21 size 12{"64"+"17"+"27"+"59"+"31"+"21"} {}

Solution

2(60)+2(20)+2(30)=2202(60)+2(20)+2(30)=220 size 12{2 \( "60" \) +2 \( "20" \) +2 \( "30" \) ="220"} {} (219)

Exercise 84

81+41+92+38+88+8081+41+92+38+88+80 size 12{"81"+"41"+"92"+"38"+"88"+"80"} {}

Exercise 85

87+22+9187+22+91 size 12{"87"+"22"+"91"} {}

Solution

2(90)+20=2002(90)+20=200 size 12{2 \( "90" \) +"20"="200"} {} (200)

Exercise 86

44+38+8744+38+87 size 12{"44"+"38"+"87"} {}

Exercise 87

19+18+39+22+4219+18+39+22+42 size 12{"19"+"18"+"39"+"22"+"42"} {}

Solution

3(20)+2(40)=1403(20)+2(40)=140 size 12{3 \( "20" \) +2 \( "40" \) ="140"} {} (140)

Exercise 88

31+28+49+2931+28+49+29 size 12{"31"+"28"+"49"+"29"} {}

Exercise 89

88+86+27+91+2988+86+27+91+29 size 12{"88"+"86"+"27"+"91"+"29"} {}

Solution

3(90)+2(30)=3303(90)+2(30)=330 size 12{3 \( "90" \) +2 \( "30" \) ="330"} {} (321)

Exercise 90

57+62+18+23+61+2157+62+18+23+61+21 size 12{"57"+"62"+"18"+"23"+"61"+"21"} {}

Mental Arithmetic- Using the Distributive Property ((Reference))

For problems 91-110, compute each product using the distributive property.

Exercise 91

15331533 size 12{"15" cdot "33"} {}

Solution

15(30+3)=450+45=49515(30+3)=450+45=495 size 12{"15" \( "30"+3 \) ="450"+"45"="495"} {}

Exercise 92

15421542 size 12{"15" cdot "42"} {}

Exercise 93

35363536 size 12{"35" cdot "36"} {}

Solution

35(404)=1400140=1,26035(404)=1400140=1,260 size 12{"35" \( "40" - 4 \) ="1400" - "140"=1,"260"} {}

Exercise 94

35283528 size 12{"35" cdot "28"} {}

Exercise 95

85238523 size 12{"85" cdot "23"} {}

Solution

85(20+3)=1,700+225=1,95585(20+3)=1,700+225=1,955 size 12{"85" \( "20"+3 \) =1,"700"+"225"=1,"955"} {}

Exercise 96

95119511 size 12{"95" cdot "11"} {}

Exercise 97

30143014 size 12{"30" cdot "14"} {}

Solution

30(10+4)=300+120=42030(10+4)=300+120=420 size 12{"30" \( "10"+4 \) ="300"+"120"="420"} {}

Exercise 98

60186018 size 12{"60" cdot "18"} {}

Exercise 99

75237523 size 12{"75" cdot "23"} {}

Solution

75(20+3)=1,500+225=1,72575(20+3)=1,500+225=1,725 size 12{"75" \( "20"+3 \) =1,"500"+"225"=1,"725"} {}

Exercise 100

65316531 size 12{"65" cdot "31"} {}

Exercise 101

17151715 size 12{"17" cdot "15"} {}

Solution

15(203)=30045=25515(203)=30045=255 size 12{"15" \( "20" - 3 \) ="300" - "45"="255"} {}

Exercise 102

38253825 size 12{"38" cdot "25"} {}

Exercise 103

14651465 size 12{"14" cdot "65"} {}

Solution

65(10+4)=650+260=91065(10+4)=650+260=910 size 12{"65" \( "10"+4 \) ="650"+"260"="910"} {}

Exercise 104

19851985 size 12{"19" cdot "85"} {}

Exercise 105

42604260 size 12{"42" cdot "60"} {}

Solution

60(40+2)=2,400+120=2,52060(40+2)=2,400+120=2,520 size 12{"60" \( "40"+2 \) =2,"400"+"120"=2,"520"} {}

Exercise 106

81408140 size 12{"81" cdot "40"} {}

Exercise 107

1510515105 size 12{"15" cdot "105"} {}

Solution

15(100+5)=1,500+75=1,57515(100+5)=1,500+75=1,575 size 12{"15" \( "100"+5 \) =1,"500"+"75"=1,"575"} {}

Exercise 108

3520235202 size 12{"35" cdot "202"} {}

Exercise 109

4530645306 size 12{"45" cdot "306"} {}

Solution

45(300+6)=13,500+270=13,77045(300+6)=13,500+270=13,770 size 12{"45" \( "300"+6 \) ="13","500"+"270"="13","770"} {}

Exercise 110

85978597 size 12{"85" cdot "97"} {}

Estimation by Rounding Fractions ((Reference))

For problems 111-125, estimate each sum using the method of rounding fractions. After you have made an estimate, find the exact value. Compare the exact and estimated values. Results may vary.

Exercise 111

38+5638+56 size 12{ { {3} over {8} } + { {5} over {6} } } {}

Solution

12+1=112152412+1=1121524 size 12{ { {1} over {2} } +1=1 { {1} over {2} } left (1 { {5} over {"24"} } right )} {}

Exercise 112

716+124716+124 size 12{ { {7} over {"16"} } + { {1} over {"24"} } } {}

Exercise 113

715+1330715+1330 size 12{ { {7} over {"15"} } + { {"13"} over {"30"} } } {}

Solution

12+12=1  2730 or 91012+12=1  2730 or 910 size 12{ { {1} over {2} } + { {1} over {2} } =1 left ( { {"27"} over {"30"} } " or " { {9} over {"10"} } right )} {}

Exercise 114

1415+19201415+1920 size 12{ { {"14"} over {"15"} } + { {"19"} over {"20"} } } {}

Exercise 115

1325+7301325+730 size 12{ { {"13"} over {"25"} } + { {7} over {"30"} } } {}

Solution

12+14=3411315012+14=34113150 size 12{ { {1} over {2} } + { {1} over {4} } = { {3} over {4} } left ( { {"113"} over {"150"} } right )} {}

Exercise 116

1112+781112+78 size 12{ { {"11"} over {"12"} } + { {7} over {8} } } {}

Exercise 117

932+1516932+1516 size 12{ { {9} over {"32"} } + { {"15"} over {"16"} } } {}

Solution

14+1=1143932 or  173214+1=1143932 or  1732 size 12{ { {1} over {4} } +1=1 { {1} over {4} } left ( { {"39"} over {"32"} } " or "1 { {7} over {"32"} } right )} {}

Exercise 118

58+13258+132 size 12{ { {5} over {8} } + { {1} over {"32"} } } {}

Exercise 119

234+635234+635 size 12{2 { {3} over {4} } +6 { {3} over {5} } } {}

Solution

234+612=9149720234+612=9149720 size 12{2 { {3} over {4} } +6 { {1} over {2} } =9 { {1} over {4} } left (9 { {7} over {"20"} } right )} {}

Exercise 120

459+8127459+8127 size 12{4 { {5} over {9} } +8 { {1} over {"27"} } } {}

Exercise 121

11518+7224511518+72245 size 12{"11" { {5} over {"18"} } +7 { {"22"} over {"45"} } } {}

Solution

1114+712=18341823301114+712=1834182330 size 12{"11" { {1} over {4} } +7 { {1} over {2} } ="18" { {3} over {4} } left ("18" { {"23"} over {"30"} } right )} {}

Exercise 122

141936+2718141936+2718 size 12{"14" { {"19"} over {"36"} } +2 { {7} over {"18"} } } {}

Exercise 123

6120+2110+813606120+2110+81360 size 12{6 { {1} over {"20"} } +2 { {1} over {"10"} } +8 { {"13"} over {"60"} } } {}

Solution

6+2+814=16141611306+2+814=1614161130 size 12{6+2+8 { {1} over {4} } ="16" { {1} over {4} } left ("16" { {"11"} over {"30"} } right )} {}

Exercise 124

578+114+12512578+114+12512 size 12{5 { {7} over {8} } +1 { {1} over {4} } +"12" { {5} over {"12"} } } {}

Exercise 125

1012+61516+819801012+61516+81980 size 12{"10" { {1} over {2} } +6 { {"15"} over {"16"} } +8 { {"19"} over {"80"} } } {}

Solution

1012+7+814=25342527401012+7+814=2534252740 size 12{"10" { {1} over {2} } +7+8 { {1} over {4} } ="25" { {3} over {4} } left ("25" { {"27"} over {"40"} } right )} {}

Collection Navigation

Content actions

Download:

Collection as:

PDF | EPUB (?)

What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

Downloading to a reading device

For detailed instructions on how to download this content's EPUB to your specific device, click the "(?)" link.

| More downloads ...

Module as:

PDF | More downloads ...

Add:

Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

Definition of a lens

Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

Who can create a lens?

Any individual member, a community, or a respected organization.

What are tags? tag icon

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks