# Connexions

You are here: Home » Content » Collaborative Statistics Using R » Data

• Preface

### Recently Viewed

This feature requires Javascript to be enabled.

Inside Collection (Textbook):

Textbook by: Ananda Mahto. E-mail the author

# Data

Module by: Ananda Mahto. E-mail the author

Summary: This module introduces the concepts of qualitative data, quantitative continuous data, and quantitative discrete data as used in statistics. Sample problems are included.

Data may come from a population or from a sample. Small letters like x x or y y generally are used to represent data values. Most data can be put into the following categories:

• Qualitative
• Quantitative

Qualitative data are the result of categorizing or describing attributes of a population. Hair color, blood type, ethnic group, the car a person drives, and the street a person lives on are examples of qualitative data. Qualitative data are generally described by words or letters. For instance, hair color might be black, dark brown, light brown, blonde, gray, or red. Blood type might be AB+, O-, or B+. Qualitative data are not as widely used as quantitative data because many numerical techniques do not apply to the qualitative data. For example, it does not make sense to find an average hair color or blood type.

Quantitative data are always numbers and are usually the data of choice because there are many methods available for analyzing the data. Quantitative data are the result of counting or measuring attributes of a population. Amount of money, pulse rate, weight, number of people living in your town, and the number of students who take statistics are examples of quantitative data. Quantitative data may be either discrete or continuous.

All data that are the result of counting are called quantitative discrete data. These data take on only certain numerical values. If you count the number of phone calls you receive for each day of the week, you might get 0, 1, 2, 3, etc.

All data that are the result of measuring are quantitative continuous data assuming that we can measure accurately. Measuring angles in radians might result in the numbers π6 π6, π3π3 ,π2π2 , ππ , 44 , etc. If you and your friends carry backpacks with books in them to school, the numbers of books in the backpacks are discrete data and the weights of the backpacks are continuous data.

## Example 1: Data Sample of Quantitative Discrete Data

The data are the number of books students carry in their backpacks. You sample five students. Two students carry 3 books, one student carries 4 books, one student carries 2 books, and one student carries 1 book. The numbers of books (3, 4, 2, and 1) are the quantitative discrete data.

## Example 2: Data Sample of Quantitative Continuous Data

The data are the weights of the backpacks with the books in it. You sample the same five students. The weights (in pounds) of their backpacks are 6.2, 7, 6.8, 9.1, 4.3. Notice that backpacks carrying three books can have different weights. Weights are quantitative continuous data because weights are measured.

## Example 3: Data Sample of Qualitative Data

The data are the colors of backpacks. Again, you sample the same five students. One student has a red backpack, two students have black backpacks, one student has a green backpack, and one student has a gray backpack. The colors red, black, black, green, and gray are qualitative data.

## Note:

You may collect data as numbers and report it categorically. For example, the quiz scores for each student are recorded throughout the term. At the end of the term, the quiz scores are reported as A, B, C, D, or F.

## Glossary

Continuous Random Variable:
A random variable (RV) whose outcomes are measured.

### Example:

The height of trees in the forest is a continuous RV.

Data:
A set of observations (a set of possible outcomes). Most data can be put into two groups: qualitative (hair color, ethnic groups and many other attributes of population) and quantitative (distance traveled to college, number of children in a family, etc.). In its turn quantitative data can be separated into two subgroups: discrete and continuous. Roughly speaking, data is discrete if it is result of counting (a number of student of the given ethnic group in a class, a number of books on a shelf, etc.), and data is continuous if it is result of measuring (distance traveled, weight of luggage, etc.)
Discrete Random Variable:
A random variable (RV) whose outcomes are counted.
Qualitative Data:
See Data.
Quantitative Data:
See Data.

## Content actions

PDF | EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

PDF | EPUB (?)

### What is an EPUB file?

EPUB is an electronic book format that can be read on a variety of mobile devices.

#### Collection to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks

#### Module to:

My Favorites (?)

'My Favorites' is a special kind of lens which you can use to bookmark modules and collections. 'My Favorites' can only be seen by you, and collections saved in 'My Favorites' can remember the last module you were on. You need an account to use 'My Favorites'.

| A lens I own (?)

#### Definition of a lens

##### Lenses

A lens is a custom view of the content in the repository. You can think of it as a fancy kind of list that will let you see content through the eyes of organizations and people you trust.

##### What is in a lens?

Lens makers point to materials (modules and collections), creating a guide that includes their own comments and descriptive tags about the content.

##### Who can create a lens?

Any individual member, a community, or a respected organization.

##### What are tags?

Tags are descriptors added by lens makers to help label content, attaching a vocabulary that is meaningful in the context of the lens.

| External bookmarks