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Abstract

An introduction of the convergence of subsequences, the bolzano-weierstrass theorem, cluster sets,

suprema, in�ma, and the catchy criterion. Multiple exercises and proofs are included.

De�nition 1:

Let {an} be a sequence of real or complex numbers. A subsequence of {an} is a sequence {bk} that
is determined by the sequence {an} together with a strictly increasing sequence {nk} of natural
numbers. The sequence {bk} is de�ned by bk = ank

. That is, the kth term of the sequence {bk} is
the nkth term of the original sequence {an}.
Exercise 1

Prove that a subsequence of a subsequence of {an} is itself a subsequence of {an}. Thus, let {an}
be a sequence of numbers, and let {bk} = {ank

} be a subsequence of {an}. Suppose {cj} = {bkj} is
a subsequence of the sequence {bk}. Prove that {cj} is a subsequence of {an}. What is the strictly
increasing sequence {mj} of natural numbers for which cj = amj

?
Here is an interesting generalization of the notion of the limit of a sequence.

De�nition 2:

Let {an} be a sequence of real or complex numbers. A number x is called a cluster point of the
sequence {an} if there exists a subsequence {bk} of {an} such that x = limbk. The set of all cluster
points of a sequence {an} is called the cluster set of the sequence.

Exercise 2

a. Give an example of a sequence whose cluster set contains two points. Give an example of
a sequence whose cluster set contains exactly n points. Can you think of a sequence whose
cluster set is in�nite?

b. Let {an} be a sequence with cluster set S. What is the cluster set for the sequence {−an}?
What is the cluster set for the sequence {a2

n}?
c. If {bn} is a sequence for which b = limbn, and {an} is another sequence, what is the cluster

set of the sequence {anbn}?
d. Give an example of a sequence whose cluster set is empty.
e. Show that if the sequence {an} is bounded above, then the cluster set S is bounded above.

Show also that if {an} is bounded below, then S is bounded below.
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f. Give an example of a sequence whose cluster set S is bounded above but not bounded below.

g. Give an example of a sequence that is not bounded, and which has exactly one cluster point.

Theorem 1:

Suppose {an} is a sequence of real or complex numbers.

1. (Uniqueness of limits) Suppose liman = L, and liman = M. Then L = M. That is, if the
limit of a sequence exists, it is unique.

2. If L = liman, and if {bk} is a subsequence of {an}, then the sequence {bk} is convergent,
and limbk = L. That is, if a sequence has a limit, then every subsequence is convergent and
converges to that same limit.

Proof:

Suppose liman = Landliman = M. Let ε be a positive number, and chooseN1 so that |an−L| < ε/2
if n ≥ N1, and choose N2 so that |an−M | < ε/2 if n ≥ N2. Choose an n larger than both N1andN2.
Then

|L−M | = |L− an + an −M | ≤ |L− an|+ |an −M | < ε. (1)

Therefore, since |L−M | < ε for every positive ε, it follows that L−M = 0 or L = M. This proves
part (1).

Next, suppose liman = L and let {bk} be a subsequence of {an}.We wish to show that limbk =
L. Let ε > 0 be given, and choose an N such that |an − L| < ε if n ≥ N. Choose a K so that
nK ≥ N . (How?) Then, if k ≥ K, we have nk ≥ nK ≥ N, whence |bk − L| = |ank

− L| < ε, which
shows that limbk = L. This proves part (2).

1:

REMARK The preceding theorem has the following interpretation. It says that if a sequence
converges to a number L, then the cluster set of the sequence contains only one number, and that
number is L. Indeed, if x is a cluster point of the sequence, then there must be some subsequence
that converges to x. But, by part (2), every subsequence converges to L. Then, by part (1), x = L.
Part (g) of Exercise shows that the converse of this theorem is not valid. that is, the cluster set
may contain only one point, and yet the sequence is not convergent.

We give next what is probably the most useful fundamental result about sequences, the Bolzano-
Weierstrass Theorem. It is this theorem that will enable us to derive many of the important properties
of continuity, di�erentiability, and integrability.

Theorem 2: Bolzano-Weierstrass
Every bounded sequence {an} of real or complex numbers has a cluster point. In other words,

every bounded sequence has a convergent subsequence.
The Bolzano-Weierstrass Theorem is, perhaps not surprisingly, a very di�cult theorem to prove.

We begin with a technical, but very helpful, lemma.

Lemma 1:

Let {an} be a bounded sequence of real numbers; i.e., assume that there exists an M such that
|an| ≤M for all n. For each n ≥ 1, let Sn be the set whose elements are {an, an+1, an+2, ...}. That
is, Sn is just the elements of the tail of the sequence from n on. De�ne xn = supSn = supk≥nak.
Then

1. The sequence {xn} is bounded (above and below).
2. The sequence {xn} is non-increasing.
3. The sequence {xn} converges to a number x.
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4. The limit x of the sequence {xn} is a cluster point of the sequence {an}. That is, there exists
a subsequence {bk} of the sequence {an} that converges to x.

5. If y is any cluster point of the sequence {an}, then y ≤ x, where x is the cluster point of part
(4). That is, x is the maximum of all cluster points of the sequence {an}.

Proof:

Since xn is the supremum of the set Sn, and since each element of that set is bounded between
−M and M, part (1) is immediate.

Since Sn+1 ⊆ Sn, it is clear that

xn+1 = supSn+1 ≤ supSn = xn, (2)

showing part (2).
The fact that the sequence {xn} converges to a number x is then a consequence of here1.
We have to show that the limit x of the sequence {xn} is a cluster point of {an}. Notice that

{xn} may not itself be a subsequence of {an}, each xn may or may not be one of the numbers
ak, so that there really is something to prove. In fact, this is the hard part of this lemma. To
�nish the proof of part (4), we must de�ne an increasing sequence {nk} of natural numbers for
which the corresponding subsequence {bk} = {ank

} of {an} converges to x. We will choose these
natural numbers {nk} so that |x − ank

| < 1/k. Once we have accomplished this, the fact that the
corresponding subsequence {ank

} converges to x will be clear. We choose the nk's inductively.
First, using the fact that x = limxn, choose an n so that |xn − x| = xn − x < 1/1. Then, because
xn = supSn, we may choose by here2 some m ≥ n such that xn ≥ am > xn − 1/1. But then
|am − x| < 1/1. (Why?) This m we call n1. We have that |an1 − x| < 1/1.

Next, again using the fact that x = limxn, choose another n so that n > n1 and so that
|xn − x| = xn − x < 1/2. Then, since this xn = supSn, we may choose another m ≥ n such that
xn ≥ am > xn − 1/2. This m we call n2. Note that we have |an2 − x| < 1/2.

Arguing by induction, if we have found an increasing set n1 < n2 < ... < nj , for which |ani−x| <
1/i for 1 ≤ i ≤ j, choose an n larger than nj such that |xn−x| < 1/ (j + 1) . Then, since xn = supSn,
choose an m ≥ n so that xn ≥ am > xn − 1/ (j + 1) . Then |am − x| < 1/ (j + 1), and we let nj+1

be this m. It follows that |anj+1 − x| < 1/ (j + 1) .
So, by recursive de�nition, we have constructed a subsequence of {an} that converges to x, and

this completes the proof of part (4) of the lemma.
Finally, if y is any cluster point of {an}, and if y = limank

, then nk ≥ k, and so ank
≤ xk,

implying that xk − ank
≥ 0. Hence, taking limits on k, we see that x− y ≥ 0, and this proves part

(5).
Now, using the lemma, we can give the proof of the Bolzano-Weierstrass Theorem.

Proof:

If {an} is a sequence of real numbers, this theorem is an immediate consequence of part (4) of the
preceding lemma.

If an = bn + cni is a sequence of complex numbers, and if {an} is bounded, then {bn} and {cn}
are both bounded sequences of real numbers. See here3. So, by the preceding paragraph, there
exists a subsequence {bnk

} of {bn} that converges to a real number b. Now, the subsequence {cnk
}

is itself a bounded sequence of real numbers, so there is a subsequence {cnkj
} that converges to a

real number c. By part (2) of Theorem 1, p. 2, we also have that the subsequence {bnkj
} converges

1"The Limit of a Sequence of Numbers: Existence of Certain Fundamental Limits", Theorem 1
<http://cnx.org/content/m36120/latest/#fs-id1170684226813>

2"The Real and Complex Numbers: Properties of the Real Numbers", Theorem 3
<http://cnx.org/content/m36085/latest/#fs-id1170177642504>

3"The Real and Complex Numbers: The Complex Numbers", Exercise 5
<http://cnx.org/content/m36113/latest/#fs-id1165800080539>
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to b. So the subsequence {ankj
} = {bnkj

+ cnkj
i} of {an} converges to the complex number b+ ci;

i.e., {an} has a cluster point. This completes the proof.

There is an important result that is analogous to the Lemma above, and its proof is easily adapted from
the proof of that lemma.

Exercise 3

Let {an} be a bounded sequence of real numbers. De�ne a sequence {yn} by yn = infk≥nak.
Prove that:

a. {yn} is nondecreasing and bounded above.
b. y = limyn is a cluster point of {an}.
c. If z is any cluster point of {an}, then y ≤ z. That is, y is the minimum of all the cluster

points of the sequence {an}. HINT: Let {αn} = {−an}, and apply the preceding lemma to
{αn}. This exercise will then follow from that.

The Bolzano-Wierstrass Theorem shows that the cluster set of a bounded sequence {an} is nonempty. It is
also a bounded set itself.

The following de�nition is only for sequences of real numbers. However, like the Bolzano-Weierstrass
Theorem, it is of very basic importance and will be used several times in the sequel.

De�nition 3:

Let {an} be a sequence of real numbers and let S denote its cluster set.
If S is nonempty and bounded above, we de�ne lim supan to be the supremum supS of S.
If S is nonempty and bounded below, we de�ne lim infan to be the in�mum infS of S.
If the sequence {an} of real numbers is not bounded above, we de�ne lim supan to be ∞, and

if {an} is not bounded below, we de�ne lim infan to be −∞.
If {an} diverges to ∞, then we de�ne lim supan and lim infan both to be ∞. And, if {an}

diverges to −∞, we de�ne lim supan and lim infan both to be −∞.
We call lim supan the limit superior of the sequence {an}, and lim infan the limit inferior of

{an}.
Exercise 4

a. Suppose {an} is a bounded sequence of real numbers. Prove that the sequence {xn} of the
lemma following Theorem 2, Bolzano-Weierstrass, p. 2 converges to lim supan. Show also
that the sequence {yn} of Exercise converges to lim infan.

b. Let {an} be a not necessarily bounded sequence of real numbers. Prove that

lim supan = inf
n
sup
k≥n

ak = lim
n
sup
k≥n

ak. (3)

and
lim infan = sup

n
inf
k≥n

ak = lim
n
infk ≥ nak. (4)

HINT: Check all cases, and use Lemma 1, p. 2 and Exercise .
c. Let {an} be a sequence of real numbers. Prove that

lim supan = −lim inf (−an) . (5)

d. Give examples to show that all four of the following possibilities can happen.

a. lim supan is �nite, and lim infan = −∞.
b. lim supan =∞ and lim infan is �nite.
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c. lim supan =∞ and lim infan = −∞.
d. both lim supan and lim infan are �nite.

The notions of limsup and liminf are perhaps mysterious, and they are in fact di�cult to grasp. The
previous exercise describes them as the resultof a kind of two-level process, and there are occasions when
this description is a great help. However, the limsup and liminf can also be characterized in other ways that
are more reminiscent of the de�nition of a limit. These other ways are indicated in the next exercise.

Exercise 5

Let {an} be a bounded sequence of real numbers with
lim supan = L and lim infan = l. Prove that L and l satisfy the following properties.

a. For each ε > 0, there exists an N such that an < L + ε for all n ≥ N. HINT: Use the fact
that lim supan = L is the number x of the lemma following Theorem 2.8, and that x is the
limit of a speci�c sequence {xn}.

b. For each ε > 0, and any natural number k, there exists a natural number j ≥ k such that
aj > L− ε. Same hint as for part (a).

c. For each ε > 0, there exists an N such that an > l − ε for all n ≥ N.
d. For each ε > 0, and any natural number k, there exists a natural number j > k such that

aj < l + ε.
e. Suppose L' is a number that satis�es parts (a) and (b). Prove that L' is the limsup of {an}.

HINT: Use part (a) to show that L' is greater than or equal to every cluster point of {an}.
Then use part (b) to show that L' is less than or equal to some cluster point.

f. If l' is any number that satis�es parts (c) and (d), show that l' is the liminf of the sequence
{an}.

Exercise 6

a. Let {an} and {bn} be two bounded sequences of real numbers, and write L = lim supan

and M = lim supbn. Prove that lim sup (an + bn) ≤ lim supan + lim supbn. HINT: Using
part (a) of the preceding exercise, show that for every ε > 0 there exists a N such that
an + bn < L + M + ε for all n ≥ N, and conclude from this that every cluster point y
of the sequence {an + bn} is less than or equal to L + M. This will �nish the proof, since
lim sup (an + bn) is a cluster point of that sequence.

b. Again, let {an} and {bn} be two bounded sequences of real numbers, and write l = lim infan

and m = lim infbn. Prove that lim inf (an + bn) ≥ lim infan + lim infbn. HINT: Use part
(c) of the previous exercise.

c. Find examples of sequences {an} and {bn} for which lim supan = lim supbn = 1, but
lim sup (an + bn) = 0.

We introduce next another property that a sequence can possess. It looks very like the de�nition of a
convergent sequence, but it di�ers in a crucial way, and that is that this de�nition only concerns the elements
of the sequence {an} and not the limit L.

De�nition 4:

A sequence {an} of real or complex numbers is a Cauchy sequence if for every ε > 0, there exists
a natural number N such that if n ≥ N and m ≥ N then |an − am| < ε.

2:

REMARK No doubt, this de�nition has something to do with limits. Any time there is a positive
ε and an N, we must be near some kind of limit notion. The point of the de�nition of a Cauchy
sequence is that there is no explicit mention of what the limit is. It isn't that the terms of the
sequence are getting closer and closer to some number L, it's that the terms of the sequence are
getting closer and closer to each other. This subtle di�erence is worth some thought.
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Exercise 7

Prove that a Cauchy sequence is bounded. (Try to adjust the proof of here4 to work for this
situation.)

The next theorem, like the Bolzano-Weierstrass Theorem, seems to be quite abstract, but it also turns
out to be a very useful tool for proving theorems about continity, di�erentiability, etc. In the proof, the
completeness of the set of real numbers will be crucial. This theorem is not true in ordered �elds that are
not complete.

Theorem 3: Cauchy Criterion
A sequence {an} of real or complex numbers is convergent if and only if it is a Cauchy sequence.

Proof:

If liman = a then given ε > 0, choose N so that |ak − a| < ε/2 if k ≥ N. From the triangle
inequality, and by adding and subtracting a, we obtain that |an − am| < ε if n ≥ N and m ≥ N.
Hence, if {an} is convergent, then {an} is a Cauchy sequence.

Conversely, if {an} is a cauchy sequence, then {an} is bounded by the previous exercise. Now
we use the fact that {an} is a sequence of real or complex numbers. Let x be a cluster point of
{an}. We know that one exists by the Bolzano-Weierstrass Theorem. Let us show that in fact this
number x not only is a cluster point but that it is in fact the limit of the sequence {an}. Given
ε > 0, choose Nso that |an − am| < ε/2 whenever both n and m ≥ N. Let {ank

} be a subsequence
of {an} that converges to x. Because {nk} is strictly increasing, we may choose a k so that nk > N
and also so that |ank

− x| < ε/2. Then, if n ≥ N, then both n and this particular nk are larger
than or equal to N. Therefore, |an − x| ≤ |an − ank

|+ |ank
− x| < ε. this completes the proof that

x = liman.

4"The Limit of a Sequence of Numbers: Properties of Convergent Sequences", Theorem 1
<http://cnx.org/content/m36126/latest/#fs-id1164146425836>
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