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Abstract

Our �rst project is to make a satisfactory de�nition of a smooth curve in the plane, for there is a

good bit of subtlety to such a de�nition. In fact, the material in this chapter is all surprisingly tricky,

and the proofs are good solid analytical arguments, with lots of ε's and references to earlier theorems.

Our �rst project is to make a satisfactory de�nition of a smooth curve in the plane, for there is a good
bit of subtlety to such a de�nition. In fact, the material in this chapter is all surprisingly tricky, and the
proofs are good solid analytical arguments, with lots of ε's and references to earlier theorems.

Whatever de�nition we adopt for a curve, we certainly want straight lines, circles, and other natural
geometric objects to be covered by our de�nition. Our intuition is that a curve in the plane should be a
�1-dimensional� subset, whatever that may mean. At this point, we have no de�nition of the dimension of
a general set, so this is probably not the way to think about curves. On the other hand, from the point
of view of a physicist, we might well de�ne a curve as the trajectory followed by a particle moving in the
plane, whatever that may be. As it happens, we do have some notion of how to describe mathematically the
trajectory of a moving particle. We suppose that a particle moving in the plane proceeds in a continuous
manner relative to time. That is, the position of the particle at time t is given by a continuous function
f (t) = x (t) + iy (t) ≡ (x (t) , y (t)) , as t ranges from time a to time b. A good �rst guess at a de�nition of
a curve joining two points z1 and z2 might well be that it is the range C of a continuous function f that is
de�ned on some closed bounded interval [a, b] . This would be a curve that joins the two points z1 = f (a)
and z2 = f (b) in the plane. Unfortunately, this is also not a satisfactory de�nition of a curve, because of
the following surprising and bizarre mathematical example, �rst discovered by Guiseppe Peano in 1890.

1:

THE PEANO CURVE The so-called �Peano curve� is a continuous function f de�ned on the
interval [0, 1] , whose range is the entire unit square [0, 1]× [0, 1] in R2.

Be careful to realize that we're talking about the �range� of f and not its graph. The graph of a real-
valued function could never be the entire square. This Peano function is a complex-valued function of a real
variable. Anyway, whatever de�nition we settle on for a curve, we do not want the entire unit square to be
a curve, so this �rst attempt at a de�nition is obviously not going to work.

Let's go back to the particle tracing out a trajectory. The physicist would probably agree that the particle
should have a continuously varying velocity at all times, or at nearly all times, i.e., the function f should
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be continuously di�erentiable. Recall that the velocity of the particle is de�ned to be the rate of change of
the position of the particle, and that's just the derivative f ' of f. We might also assume that the particle
is never at rest as it traces out the curve, i.e., the derivative f ' (t) is never 0. As a �nal simpli�cation, we
could suppose that the curve never crosses itself, i.e., the particle is never at the same position more than
once during the time interval from t = a to t = b. In fact, these considerations inspire the formal de�nition
of a curve that we will adopt below.

Recall that a function f that is continuous on a closed interval [a, b] and continuously di�erentiable on the
open interval (a, b) is called a smooth function on [a, b] . And, if there exists a partition {t0 < t1 < ... < tn}
of [a, b] such that f is smooth on each subinterval [ti−1, ti] , then f is called piecewise smooth on [a, b] .
Although the derivative of a smooth function is only de�ned and continuous on the open interval (a, b) , and
hence possibly is unbounded, it follows from part (d) of here1 that this derivative is improperly-integrable on
that open interval. We recall also that just because a function is improperly-integrable on an open interval,
its absolute value may not be improperly-integrable. Before giving the formal de�nition of a smooth curve,
which apparently will be related to smooth or piecewise smooth functions, it is prudent to present an
approximation theorem about smooth functions. here2 asserts that every continuous function on a closed
bounded interval is the uniform limit of a sequence of step functions. We give next a similar, but stronger,
result about smooth functions. It asserts that a smooth function can be approximated �almost uniformly�
by piecewise linear functions.

Theorem 1:

Let f be a smooth function on a closed and bounded interval [a, b] , and assume that |f '| is
improperly-integrable on the open interval (a, b) . Given an ε > 0, there exists a piecewise linear
function p for which

1. |f (x)− p (x) | < ε for all x ∈ [a, b] .
2.

∫ b
a
|f ' (x)− p' (x) | dx < ε.

That is, the functions f and p are close everywhere, and their derivatives are close on average in
the sense that the integral of the absolute value of the di�erence of the derivatives is small.
Proof:

Because f is continuous on the compact set [a, b] , it is uniformly continuous. Hence, let δ > 0 be
such that if x, y ∈ [a, b] , and |x− y| < δ, then |f (x)− f (y) | < ε/2.

Because |f '| is improperly-integrable on the open interval (a, b) , we may use part (b) of here3

to �nd a δ' > 0, which may also be chosen to be < δ, such that
∫ a+δ'

a
|f '|+

∫ b
b−δ'
|f '| < ε/2, and we

�x such a δ'.
Now, because f ' is uniformly continuous on the compact set

[
a+ δ', b− δ'

]
, there exists an

α > 0 such that |f ' (x)− f ' (y) | < ε/4 (b− a) if x and y belong to
[
a+ δ', b− δ'

]
and |x− y| < α.

Choose a partition {x0 < x1 < ... < xn} of [a, b] such that x0 = a, x1 = a+δ', xn−1 = b−δ', xn = b,
and xi − xi−1 < min (δ, α) for 2 ≤ i ≤ n − 1. De�ne p to be the piecewise linear function on
[a, b] whose graph is the polygonal line joining the n + 1 points (a, f (x1)) ,{(xi, f (xi))} for 1 ≤
i ≤ n − 1, and (b, f (xn−1)) . That is, p is constant on the outer subintervals [a, x1] and [xn−1, b]
determined by the partition, and its graph between x1 and xn−1 is the polygonal line joining the
points {(x1, f (x1)) , ..., (xn−1, f (xn−1))}. For example, for 2 ≤ i ≤ n − 1, the function p has the
form

p (x) = f (xi−1) +
f (xi)− f (xi−1)

xi − xi−1
(x− xi−1) (1)

1"Integration, Average Behavior: Extending the De�nition of Integrability", Exercise 2
<http://cnx.org/content/m36222/latest/#fs-id1164267204474>

2"Functions and Continuity: Power Series Functions", Exercise 5
<http://cnx.org/content/m36165/latest/#fs-id1171756794069>

3"Integration, Average Behavior: Extending the De�nition of Integrability", Exercise 2
<http://cnx.org/content/m36222/latest/#fs-id1164267204474>
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on the interval [xi−1, xi] . So, p (x) lies between the numbers f (xi−1) and f (xi) for all i. Therefore,

|f (x)− p (x) | ≤ |f (x)− f (xi) |+ |f (xi)− l (x) | ≤ |f (x)− f (xi) |+ |f (xi)− f (xi−1) | < ε. (2)

Since this inequality holds for all i, part (1) is proved.
Next, for 2 ≤ i ≤ n−1, and for each x ∈ (xi−1, xi) , we have p' (x) = (f (xi)− f (xi−1)) / (xi − xi−1) ,

which, by the Mean Value Theorem, is equal to f ' (yi) for some yi ∈ (xi−1, xi) . So, for each such
x ∈ (xi−1, xi) , we have |f ' (x)−p' (x) | = |f ' (x)−f ' (yi) |, and this is less than ε/4 (b− a) , because
|x− yi| < α. On the two outer intervals, p (x) is a constant, so that p' (x) = 0. Hence,∫ b

a
|f ' − p'| =

∑n
i=1

∫ xi

xi−1
|f ' − p'|

=
∫ x1

a
|f '|+

∑n−1
i=2 |f ' − p'|+

∫ b
xn−1

|f '|

≤
∫ a+δ'

a
|f '|+

∫ b
b−δ'
|f '|+ ε

4(b−a)
∫ xn−1

x1
1

< ε.

(3)

The proof is now complete.

2:

REMARK It should be evident that the preceding theorem can easily be generalized to a piecewise
smooth function f, i.e., a function that is continuous on [a, b] , continuously di�erentiable on each
subinterval (ti−1, ti) of a partition {t0 < t1 < ... < tn}, and whose derivative f ' is absolutely
integrable on (a, b) . Indeed, just apply the theorem to each of the subintervals (ti−1, ti) , and then
carefully piece together the piecewise linear functions on those subintervals.

Now we are ready to de�ne what a smooth curve is.

De�nition 1:

By a smooth curve from a point z1 to a di�erent point z2 in the plane, we mean a set C ⊆ C that
is the range of a 1-1, smooth, function φ : [a, b]→ C, where [a, b] is a bounded closed interval in R,
where z1 = φ (a) and z2 = φ (b) , and satisfying φ' (t) 6= 0 for all t ∈ (a, b) .

More generally, if φ : [a, b]→ R2 is 1-1 and piecewise smooth on [a, b] , and if {t0 < t1 < ... < tn}
is a partition of [a, b] such that φ' (t) 6= 0 for all t ∈ (ti−1, ti) , then the range C of φ is called a
piecewise smooth curve from z1 = φ (a) to z2 = φ (b) .

In either of these cases, φ is called a parameterization of the curve C.

Note that we do not assume that |φ'| is improperly-integrable, though the preceding theorem might have
made you think we would.

3:

REMARK Throughout this chapter we will be continually faced with the fact that a given curve
can have many di�erent parameterizations. Indeed, if φ1 : [a, b] → C is a parameterization, and
if g : [c, d] → [a, b] is a smooth function having a nonzero derivative, then φ2 (s) = φ1 (g (s))
is another parameterization of C. Since our de�nitions and proofs about curves often involve a
parametrization, we will frequently need to prove that the results we obtain are independent of the
parameterization. The next theorem will help; it shows that any two parameterizations of C are
connected exactly as above, i.e., there always is such a function g relating φ1 and φ2.

Theorem 2:

Let φ1 : [a, b] → C and φ2 : [c, d] → C be two parameterizations of a piecewise smooth curve
C joining z1 to z2. Then there exists a piecewise smooth function g : [c, d] → [a, b] such that
φ2 (s) = φ1 (g (s)) for all s ∈ [c, d] . Moreover, the derivative g' of g is nonzero for all but a �nite
number of points in [c, d] .

http://cnx.org/content/m36225/1.2/
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Proof:

Because both φ1 and φ2 are continuous and 1-1, it follows from here4 that the function g = φ−1
1 ◦φ2

is continuous and 1-1 from [c, d] onto [a, b] . Moreover, from here5, it must also be that g is strictly
increasing or strictly decreasing. Write φ1 (t) = u1 (t) + iv1 (t) ≡ (u1 (t) , v1 (t)) , and φ2 (s) =
u2 (s) + iv2 (s) ≡ (u2 (s) , v2 (s)) . Let {x0 < x1 < ... < xp} be a partition of [a, b] for which φ'1 is
continuous and nonzero on the subintervals (xj−1, xj) , and let {y0 < y1 < ... < yq} be a partition
of [c, d] for which φ'2 is continuous and nonzero on the subintervals (yk−1, yk) . Then let {s0 < s1 <
... < sn} be the partition of [c, d] determined by the �nitely many points {yk}∪{g−1 (xj)}. We will
show that g is continuously di�erentiable at each point s in the subintervals (si−1, si) .

Fix an s in one of the intervals (si−1, si) , and let t = φ−1
1 (φ2 (s)) = g (s) . Of course this means

that φ1 (t) = φ2 (s) , or u1 (t) = u2 (s) and v1 (t) = v2 (s) . Then t is in some one of the intervals
(xj−1, xj) , so that we know that φ'1 (t) 6= 0. Therefore, we must have that at least one of u'1 (t)
or v'1 (t) is nonzero. Suppose it is v'1 (t) that is nonzero. The argument, in case it is u'1 (t) that
is nonzero, is completely analogous. Now, because v'1 is continuous at t and v'1 (t) 6= 0, it follows
that v1 is strictly monotonic in some neighborhood (t− δ, t+ δ) of t and therefore is 1-1 on that
interval. Then v−1

1 is continuous by here6, and is di�erentiable at the point v1 (t) by the Inverse
Function Theorem. We will show that on this small interval g = v−1

1 ◦ v2, and this will prove that
g is continuously di�erentiable at s.

Note �rst that if φ2 (σ) = x + iy is a point on the curve C, then v2
(
φ−1

2 (x+ iy)
)

= y. Then,
for any τ ∈ [a, b] , we have

v−1
1

(
v2
(
g−1 (τ)

))
= v−1

1

(
v2
(
φ−1

2 (φ1 (τ))
))

= v−1
1

(
v2
(
φ−1

2 (u1 (τ) + iv1 (τ))
))

= v−1
1 (v1 (τ))

= τ,

(4)

showing that v−1
1 ◦ v2 = g−1−1 = g. Hence g is continuously di�erentiable at every point s in the

subintervals (si−1, si) . Indeed g' (σ) = v−1
1

'
(v2 (σ)) v'2 (σ) for all σ near s, and hence g is piecewise

smooth.
Obviously, φ2 (s) = φ1 (g (s)) for all s, implying that φ'2 (s) = φ'1 (g (s)) g' (s) . Since φ'2 (s) 6= 0

for all but a �nite number of points s, it follows that g' (s) 6= 0 for all but a �nite number of points,
and the theorem is proved.

Corollary 1:

Let φ1 and φ2 be as in the theorem. Then, for all but a �nite number of points z = φ1 (t) = φ2 (s)
on the curve C, we have

φ'1 (t)
|φ'1 (t) |

=
φ'2 (s)
|φ'2 (s) |

. (5)

Proof:

From the theorem we have that

φ'2 (s) = φ'1 (g (s)) g' (s) = φ'1 (t) g' (s) (6)

4"Functions and Continuity: Deeper Analytic Properties of Continuous Functions", Theorem 5
<http://cnx.org/content/m36167/latest/#fs-id8649209>

5"Functions and Continuity: Deeper Analytic Properties of Continuous Functions", Theorem 6
<http://cnx.org/content/m36167/latest/#fs-id1169172121798>

6"Functions and Continuity: Deeper Analytic Properties of Continuous Functions", Theorem 5
<http://cnx.org/content/m36167/latest/#fs-id8649209>
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for all but a �nite number of points s ∈ (c, d) . Also, g is strictly increasing, so that g' (s) ≥ 0
for all points s where g is di�erentiable. And in fact, g' (s) 6= 0 for all but a �nite number of s's,

because g' (s) is either
(
v−1
1 ◦ v2

)'
(s) or

(
u−1

1 ◦ u2

)'
(s) , and these are nonzero except for a �nite

number of points. Now the corollary follows by direct substitution.

4:

REMARK If we think of φ' (t) =
(
x' (t) , y' (t)

)
as a vector in the plane R2, then the corollary

asserts that the direction of this vector is independent of the parameterization, at least at all but a
�nite number of points. This direction vector will come up again as the unit tangent of the curve.

The adjective �smooth� is meant to suggest that the curve is bending in some reasonable way, and
speci�cally it should mean that the curve has a tangent, or tangential direction, at each point. We give the
de�nition of tangential direction below, but we note that in the context of a moving particle, the tangential
direction is that direction in which the particle would continue to move if the force that is keeping it on
the curve were totally removed. If the derivative φ' (t) 6= 0, then this vector is the velocity vector, and its
direction is exactly what we should mean by the tangential direction.

The adjective �piecewise� will allow us to consider curves that have a �nite number of points where there
is no tangential direction, e.g., where there are �corners.�

We are carefully orienting our curves at the moment. A curve C from z1 to z2 is being distinguished from
the same curve from z2 to z1, even though the set C is the same in both instances. Which way we traverse
a curve will be of great importance at the end of this chapter, when we come to Green's Theorem.

De�nition 2:

Let C, the range of φ : [a, b] → C, be a piecewise smooth curve, and let z = (x, y) = φ (c) be
a point on the curve. We say that the curve C has a tangential direction at z, relative to the
parameterization φ, if the following limit exists:

lim
t→c

φ (t)− z
|φ (t)− z|

= lim
t→c

φ (t)− φ (c)
|φ (t)− φ (c) |

. (7)

If this limit exists, it is a vector of length 1 in R2, and this unit vector is called the unit tangent
(relative to the parameterization φ) to C at z.

The curve C has a unit tangent at the point z if there exists a parameterization φ for which the
unit tangent at z relative to φ exists.

Exercise 1

a. Restate the de�nition of tangential direction and unit tangent using the R2 version of the
plane instead of the C version. That is, restate the de�nition in terms of pairs (x, y) of real
numbers instead of a complex number z.

b. Suppose φ : [a, b]→ C is a parameterization of a piecewise smooth curve C, and that t ∈ (a, b)
is a point where φ is di�erentiable with φ' (t) 6= 0. Show that the unit tangent (relative to
the parameterization φ) to C at z = φ (t) exists and equals φ' (t) /|φ' (t) |. Conclude that,
except possibly for a �nite number of points, the unit tangent to C at z is independent of the
parameterization.

c. Let C be the graph of the function f (t) = |t| for t ∈ [−1, 1] . Is C a smooth curve? Is it a
piecewise smooth curve? Does C have a unit tangent at every point?

d. Let C be the graph of the function f (t) = t2/3 =
(
t1/3

)2
for t ∈ [−1, 1] . Is C a smooth curve?

Is it a piecewise smooth curve? Does C have a unit tangent at every point?
e. Consider the set C that is the right half of the unit circle in the plane. Let φ1 : [−1, 1]→ C

be de�ned by

φ1 (t) =
(
cos
(
t
π

2

)
, sin

(
t
π

2

))
, (8)

http://cnx.org/content/m36225/1.2/
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and let φ2 : [−1, 1]→ C be de�ned by

φ2 (t) =
(
cos
(
t3
π

2

)
, sin

(
t3
π

2

))
. (9)

Prove that φ1 and φ2 are both parameterizations of C. Discuss the existence of a unit tangent
at the point (1, 0) = φ1 (0) = φ2 (0) relative to these two parameterizations.

f. Suppose φ : [a, b]→ C is a parameterization of a curve C from z1 to z2. De�ne ψ on [a, b] by
ψ (t) = φ (a+ b− t) . Show that ψ is a parameterization of a curve from z2 to z1.

Exercise 2

a. Suppose f is a smooth, real-valued function de�ned on the closed interval [a, b] , and let C ⊆ R2

be the graph of f. Show that C is a smooth curve, and �nd a �natural� parameterization
φ : [a, b]→ C of C. What is the unit tangent to C at the point (t, f (t))?

b. Let z1 and z2 be two distinct points in C, and de�ne φ : [0, 1]→ c by φ (t) = (1− t) z1 + tz2.
Show that φ is a parameterization of the straight line from the point z1 to the point z2.
Consequently, a straight line is a smooth curve. (Indeed, what is the de�nition of a straight
line?)

c. De�ne a function φ : [−r, r] → R2 by φ (t) =
(
t,
√
r2 − t2

)
. Show that the range C of φ is a

smooth curve, and that φ is a parameterization of C.
d. De�ne φ on [0, π/2) by φ (t) = eit. For what curve is φ a parametrization?
e. Let z1, z2, ..., zn be n distinct points in the plane, and suppose that the polygonal line joing

these points in order never crosses itself. Construct a parameterization of that polygonal line.

f. Let S be a piecewise smooth geometric set determined by the interval [a, b] and the two
piecewise smooth bounding functions u and l. Suppose z1 and z2 are two points in the interior
S0 of S. Show that there exists a piecewise smooth curve C joining z1 to z2, i.e., a piecewise

smooth function φ :

[
^
a,
^
b

]
→ C with φ

(
^
a

)
= z1 and φ

(
^
b

)
= z2, that lies entirely in S0.

g. Let C be a piecewise smooth curve, and suppose φ : [a, b] → C is a parameterization of C.
Let [c, d] be a subinterval of [a, b] . Show that the range of the restriction of φ to [c, d] is a
smooth curve.

Exercise 3

Suppose C is a smooth curve, parameterized by φ = u+ iv : [a, b]→ C.

a. Suppose that u' (t) 6= 0 for all t ∈ (a, b) . Prove that there exists a smooth, real-valued function
f on some closed interval

[
a', b'

]
such that C coincides with the graph of f. HINT: f should

be something like v ◦ u−1.
b. What if v' (t) 6= 0 for all t ∈ (a, b)?

Exercise 4

Let C be the curve that is the range of the function φ : [−1, 1]→ C, where φ (t) = t3 + t6i.

a. Is C a piecewise smooth curve? Is it a smooth curve? What points z1 and z2 does it join?
b. Is φ a parameterization of C?
c. Find a parameterization for C by a function ψ : [3, 4]→ C.
d. Find the unit tangent to C and the point 0 + 0i.

Exercise 5

Let C be the curve parameterized by φ : [−π, π − ε]→ C de�ned by φ (t) = eit = cos (t)+ isin (t) .

a. What curve does φ parameterize?
b. Find another parameterization of this curve, but base on the interval [0, 1− ε] .
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