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Abstract

A formula for calculating arc length, an exercise exploring the possibility of in�nite length, and some

other related theorems, remarks, and exercises.

Suppose C is a piecewise smooth curve, parameterized by a function φ. Continuing to think like a physicist,
we might guess that the length of this curve could be computed as follows. The particle is moving with
velocity φ' (t) . This velocity is thought of as a vector in R2, and as such it has a direction and a magnitude
or speed. The speed is just the absolute value |φ' (t) | of the velocity vector φ' (t) . Now distance is speed
multiplied by time, and so a good guess for the formula for the length L of the curve C would be

L =
∫ b

a

|φ' (t) | dt. (1)

Two questions immediately present themselves. First, and of primary interest, is whether the function |φ'|
is improperly-integrable on (a, b)? We know by here1 that φ' itself is improperly-integrable, but we also know
from here2 that a function can be improperly-integrable on an open interval and yet its absolute value is
not. In fact, the answer to this �rst question is no (See Exercise (A curve of in�nite length).). We know
only that |φ'| exists and is continuous on the open subintervals of a partition of [a, b] .

The second question is more subtle. What if we parameterize a curve in two di�erent ways, i.e., with two
di�erent functions φ1 and φ2? How do we know that the two integral formulas for the length have to agree?
Of course, maybe most important of all to us, we also must justify the physicist's intuition. That is, we must
give a rigorous mathematical de�nition of the length of a smooth curve and show that Formula ((1)) above
does in fact give the length of the curve. First we deal with the independence of parameterization question.

Theorem 1:

Let C be a smooth curve joining (distinct) points z1 to z2 in C, and let φ1 : [a, b] → C and
φ2 : [c, d]→ C be two parameterizations of C. Suppose |φ'2| is improperly-integrable on (c, d) . Then
|φ'1|is improperly-integrable on (a, b) , and∫ b

a

‖ φ'1 (t) ‖ dt =
∫ d

c

‖ φ'2 (s) ‖ ds. (2)
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Proof:

We will use here3. Thus, let g = φ−1
1 ◦φ2, and recall that g is continuous on [c, d] and continuously

di�erentiable on each open subinterval of a certain partition of [c, d] . Therefore, by part (d) of
here4, g' is improperly-integrable on (c, d) .

Let {x0 < x1 < ... < xp} be a partition of [a, b] for which φ'1 is continuous and nonzero on the
subintervals (xj−1, xj) . To show that |φ'1| is improperly-integrable on (a, b) , it will su�ce to show
this integrability on each subinterval (xj−1, xj) . Thus, �x a closed interval

[
a', b'

]
⊂ (xj−1, xj) , and

let
[
c', d'

]
be the closed subinterval of [c, d] such that g maps

[
c', d'

]
1-1 and onto

[
a', b'

]
. Hence,

by part (e) of here5, we have∫ b'
a'
|φ'1 (t) | dt =

∫ d'

c'
|φ'1 (g (s)) |g' (s) ds

=
∫ d'

c'
|φ'1 (g (s)) ||g' () s| ds

=
∫ d'

c'
|φ'1 (g (s)) g' (s) | ds

=
∫ d'

c'
|(φ1 ◦ g)' (s) | ds

=
∫ d'

c'
|φ'2 (s) | ds

≤
∫ d
c
|φ'2 (s) | ds,

(3)

which, by taking limits as a' goes to xj−1 and b
' goes to xj , shows that |φ'1| is improperly-integrable

over (xj−1, xj) for every j, and hence integrable over all of (a, b) . Using part (e) of here6 again, and
a calculation similar to the one above, we deduce the equality∫ b

a

|φ'1| =
∫ d

c

|φ'2|, (4)

and the theorem is proved.

Exercise 1: A curve of in�nite length

Let φ : [0, 1] : R2 be de�ned by φ (0) = (0, 0) , and for t > 0,φ (t) = (t, tsin (1/t)) . Let C be the
smooth curve that is the range of φ.

a. Graph this curve.
b. Show that

|φ' (t) | =
√

1 + sin2 (1/t)− sin(2/t)
t + cos2(1/t)

t2

= 1
t

√
t2 + t2sin2 (1/t)− tsin (2/t) + cos2 (1/t).

(5)

c. Show that ∫ 1

δ

|φ' (t) | dt =
∫ 1/δ

1

1
t

√
1
t2

+
sin2 (t)
t2

− sin (2t)
t

+ cos2 (t) dt. (6)

d. Show that there exists an ε > 0 so that for each positive integer n we have cos2 (t) −
sin (2t) /t > 1/2 for all t such that |t− nπ| < ε.

3"Integration Over Smooth Curves in the Plane: Smooth Curves in the Plane", Theorem 2
<http://cnx.org/content/m36225/latest/#fs-id1170784569728>

4"Integration, Average Behavior: Extending the De�nition of Integrability", Exercise 2
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e. Conclude that |φ'| is not improperly-integrable on (0, 1) . Deduce that, if Formula ((1)) is
correct for the length of a curve, then this curve has in�nite length.

Next we develop a de�nition of the length of a parameterized curve from a purely mathematical or geometric
point of view. Happily, it will turn out to coincide with the physically intuitive de�nition discussed above.

Let C be a piecewise smooth curve joining the points z1 and z2, and let φ : [a, b]→ C be a parameterization
of C. Let P = {a = t0 < t1 < ... < tn = b} be a partition of the interval [a, b] . For each 0 ≤ j ≤ n write

zj = φ (tj) , and think about the polygonal trajectory joining these points {zj} in order. The length LφP of
this polygonal trajectory is given by the formula

LφP =
n∑
j=1

|zj − zj−1|, (7)

and this length is evidently an approximation to the length of the curve C. Indeed, since the straight line
joining two points is the shortest curve joining those points, these polygonal trajectories all should have a
length smaller than or equal to the length of the curve. These remarks motivate the following de�nition.

De�nition 1:

Let φ : [a, b] → C be a parameterization of a piecewise smooth curve C ⊂ C. By the lengthLφ of

C, relative to the parameterization φ, we mean the number Lφ = supPL
φ
P , where the supremum is

taken over all partitions P of [a, b] .
1:

Of course, the supremum in the de�nition above could well equal in�nity in some cases. Though it
is possible for a curve to have an in�nite length, the ones we will study here will have �nite lengths.
This is another subtlety of this subject. After all, every smooth curve is a compact subset of R2,
since it is the continuous image of a closed and bounded interval, and we think of compact sets as
being ��nite� in various ways. However, this �niteness does not necessarily extend to the length of
a curve.

Exercise 2

Let φ : [a, b]→ R2 be a parameterization of a piecewise smooth curve C, and let P and Q be two
partitions of [a, b] .

a. If P is �ner than Q, i.e., Q ⊆ P, show that LφQ ≤ L
φ
P .

b. If φ (t) = u (t) + iv (t) , express LφP in terms of the numbers u (tj) and v (tj) .

Of course, we again face the annoying possibility that the de�nition of length of a curve will depend on the
parameterization we are using. However, the next theorem, taken together with Theorem 1, p. 1, will show
that this is not the case.

Theorem 2:

If C is a piecewise smooth curve parameterized by φ : [a, b]→ C, then

Lφ =
∫ b

a

|φ' (t) | dt, (8)

speci�cally meaning that one of these quantities is in�nite if and only if the other one is in�nite.
Proof:

We prove this theorem for the case when C is a smooth curve, leaving the general argument for
a piecewise smooth curve to the exercises. We also only treat here the case when Lφ is �nite, also
leaving the argument for the in�nite case to the exercises. Hence, assume that φ = u + iv is a
smooth function on [a, b] and that Lφ <∞.

http://cnx.org/content/m36226/1.2/
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Let ε > 0 be given. Choose a partition P = {t0 < t1 < ... < tn} of [a, b] for which

Lφ − LφP = Lφ −
n∑
j=1

|φ (tj)− φ (tj−1) | < ε. (9)

Because φ is continuous, we may assume by making a �ner partition if necessary that the tj 's are
such that |φ (t1)− φ (t0) | < ε and |φ (tn)− φ (tn−1) | < ε. This means that

Lφ −
n−1∑
j=2

|φ (tj)− φ (tj−1) | < 3ε. (10)

The point of this step (trick) is that we know that φ' is continuous on the open interval (a, b) , but
we will use that it is uniformly continuous on the compact set [t1, tn−1] . Of course that means that
|φ'| is integrable on that closed interval, and in fact one of the things we need to prove is that |φ'|
is improperly-integrable on the open interval (a, b) .

Now, because φ' is uniformly continuous on the closed interval [t1, tn−1] , there exists a δ > 0
such that |φ' (t)−φ' (s) | < ε if |t−s| < δ and t and s are in the interval [t1, tn−1] .We may assume,
again by taking a �ner partition if necessary, that the mesh size of P is less than this δ. Then, using
part (f) of here7, we may also assume that the partition P is such that

|
∫ tn−1

t1

|φ' (t) | dt−
n−1∑
j=2

|φ' (sj) | (tj − tj−1) | < ε (11)

no matter what points sj in the interval (tj−1, tj) are chosen. So, we have the following calculation,

7"Integration, Average Behavior: Integrable Functions", Exercise 3
<http://cnx.org/content/m36209/latest/#fs-id1170766144622>
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in the middle of which we use the Mean Value Theorem on the two functions u and v.

0 ≤ |Lφ −
∫ tn−1

t1
|φ' (t) | dt|

≤ |Lφ −
∑n−1
j=2 |φ (tj)− φ (tj−1) |

+ |
∑n−1
j=2 |φ (tj)− φ (tj−1) | −

∫ tn−1

t1
|φ' (t) | dt|

≤ 3ε+ |
∑n−1
j=2 |φ (tj)− φ (tj−1) | −

∫ gn−1

t1
|φ' (t) | dt|

= 3ε+ |
∑n−1
j=2 |u (tj)− u (tj−1) + i

(
v (tj)− v (tj−1) | −

∫ tn−1

t1
|φ' (t) | dt|

= 3ε+ |
∑n−1
j=2

√
(u (tj)− u (tj−1))

2 + (v (tj)− v (tj−1))
2

−
∫ gn−1

t1
|φ' (t) | dt|

= 3ε+ |
∑n−1
j=2

√
(u' (sj))

2 + (v' (rj))
2 (tj − tj−1)

−
∫ tn−1

t1
|φ' (t) | dt|

≤ 3ε+ |
∑n−1
j=2

√
(u' (sj))

2 + (v' (sj))
2 (tj − tj−1)

−
∫ tn−1

t1
|φ' (t) | dt|

+
∑n−1
j=2 |

√
(u (sj))

2 + (v' (rj))
2 −

√
(u (sj))

2 + (v' (sj))
2| (tj − tj−1)

= 3ε+ |
∑n−1
j=2 |φ' (sj) | (tj − tj−1)−

∫ tn−1

t1
|φ' (t) | dt|

+
∑n−1
j=2 |

√
(u (sj))

2 + (v' (rj))
2 −

√
(u (sj))

2 + (v' (sj))
2| (tj − tj−1)

≤ 4ε+
∑n−1
j=2

|(v'(rj))2−(v'(sj))2|√
(u'(sj))

2+(v'(rj))
2+
√

(u'(sj))
2+(v'(sj))

2
(tj − tj−1)

≤ 4ε+
∑n−1
j=2

|v'(rj)−v'(sj)||v'(rj)+v
'(sj)|

|v'(rj)|+|v'(sj)| (tj − tj−1)

≤ 4ε+
∑n−1
j=2 |v' (rj)− v' (sj) | (tj − tj−1)

≤ 4ε+
∑n−1
j=2 |φ' (rj)− φ' (sj) | (tj − tj−1)

≤ 4ε+
∑n−1
j=2 ε (tj − tj−1)

= 4ε+ ε (tn−1 − t1)
< ε (4 + b− a) .

(12)

This implies that

Lφ − ε (4 + b− a) ≤
∫ tn−1

t1

|φ'| ≤ Lφ + ε (4 + b− a) . (13)

If we now let t1 approach a and tn−1 approach b, we get

Lφ − ε (4 + b− a) ≤
∫ b

a

|φ'| ≤ Lφ + ε (4 + b− a) , (14)

which completes the proof, since ε is arbitrary.

Exercise 3

a. Take care of the piecewise case in the preceding theorem.
b. Take care of the case when Lφ is in�nite in the preceding theorem.

We now have all the ingredients necessary to de�ne the length of a smooth curve.

http://cnx.org/content/m36226/1.2/
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De�nition 2:

Let C be a piecewise smooth curve in the plane. The length or arc lengthL ≡ L (C) of C is de�ned
by the formula

L (C) = Lφ = sup
P
LφP , (15)

where φ is any parameterization of C.
If z and w are two points on a piecewise smooth curve C, we will denote by L (z, w) the arc

length of the portion of the curve between z and w.

2:

REMARK According to Theorem 1, p. 1 and Theorem 2, p. 3, we have the following formula
for the length of a piecewise smooth curve:

L =
∫ b

a

|φ' (t) | dt, (16)

where φ is any parameterization of C.
It should come as no surprise that the length of a curve C from z1 to z2 is the same as the length

of that same curve C, but thought of as joining z2 to z1. Nevertheless, let us make the calculation
to verify this. If φ : [a, b]→ C is a parameterization of this curve from z1 to z2, then we have seen
in part (f) of exercise 6.1 that ψ : [a, b]→ C, de�ned by ψ (t) = φ (a+ b− t) , is a parameterization
of C from z2 to z1.We just need to check that the two integrals giving the lengths are equal. Thus,∫ b

a

|ψ' (t) | dt =
∫ b

a

|φ' (a+ b− t) (−1) | dt =
∫ b

a

|φ' (a+ b− t) | dt =
∫ b

a

|φ' (s) | ds, (17)

where the last equality follows by changing variables, i.e., setting t = a+ b− s.
We can now derive the formula for the circumference of a circle, which was one of our main

goals. TRUMPETS?

Theorem 3:

Let C be a circle of radius r in the plane. Then the length of C is 2πr.
Proof:

Let the center of the circle be denoted by (h, k) . We can parameterize the top half of the circle by
the function φ on the interval [0, π] by φ (t) = h+ rcos (t) + i (k + rsin (t)) . So, the length of this
half circle is given by

L =
∫ π

0

|φ' (t) | dt =
∫ π

0

| − rsin (t) + ircos (t) | dt =
∫ π

0

r dt = πr. (18)

The same kind of calculation would show that the lower half of the circle has length πr, and hence
the total length is 2πr.

The integral formula for the length of a curve is frequently not much help, especially if you really want
to know how long a curve is. The integrals that show up are frequently not easy to work out.

Exercise 4

a. Let C be the portion of the graph of the function y = x2 between x = 0 and x = 1. Let
φ : [0, 1] → C be the parameterization of this curve given by φ (t) = t + t2i. Find the length
of this curve.

b. De�ne φ : [−0, π] → C by φ (t) = acos (t) + ibsin (t) . What curve does φ parameterize, and
can you �nd its length?
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